Skip to main content

Asymmetric Temperature/pH Dual-Responsive Symmetric Hour-Glass Shaped Single Nanochannel

  • Chapter
  • First Online:
Bio-inspired Asymmetric Design and Building of Biomimetic Smart Single Nanochannels

Part of the book series: Springer Theses ((Springer Theses))

  • 643 Accesses

Abstract

Artificial single nanochannels have emerged as possible candidates for mimicking the process of ionic transport in ion channel and boosting the development of bio-inspired intelligent nanomachines for real-world applications, such as biosensors, molecular filtration, and nanofluidic devices. One challenge that remains is to make the artificial nanochannel “smart” with various functions like organism in nature. The components of ion channels are asymmetrically distributed between membrane surfaces, which are significant for the implementation of the complex biological function. Inspired by this natural asymmetrical design, here I introduce a biomimetic asymmetric responsive single nanochannel system that displays the advanced feature of providing control over pH and temperature cooperation tunable asymmetric ionic transport property through asymmetric modifications inside the single nanochannels, which could be considered as a primary platform for the simulation of the different ionic transport processes as well as the enhancement of the functionality of ion channels [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hou X, Yang F, Li L, Song Y, Jiang L, Zhu D (2010) A biomimetic asymmetric responsive single nanochannel. J Am Chem Soc 132(33):11736–11742. doi:10.1021/ja1045082

    Article  CAS  Google Scholar 

  2. Hille B (2001) Ion channels of excitable membranes. Sinauer Associates, Sunderland

    Google Scholar 

  3. Martin CR, Siwy ZS (2007) Learning nature’s way: biosensing with synthetic nanopores. Science 317(5836):331–332. doi:10.1126/science.1146126

    Article  CAS  Google Scholar 

  4. Hou X, Jiang L (2009) Learning from nature: building bio-inspired smart nanochannels. ACS Nano 3(11):3339–3342. doi:10.1021/Nn901402b

    Article  CAS  Google Scholar 

  5. Vlassiouk I, Apel PY, Dmitriev SN, Healy K, Siwy ZS (2009) Versatile ultrathin nanoporous silicon nitride membranes. Proc Natl Acad Sci USA 106(50):21039–21044. doi:10.1073/pnas.0911450106

    Article  CAS  Google Scholar 

  6. Dekker C (2007) Solid-state nanopores. Nat Nanotechnol 2(4):209–215. doi:10.1038/nnano.2007.27

    Article  CAS  Google Scholar 

  7. Baker LA, Bird SP (2008) Nanopores—a makeover for membranes. Nat Nanotechnol 3(2):73–74. doi:10.1038/nnano.2008.13

    Article  CAS  Google Scholar 

  8. Alcaraz A, Ramirez P, Garcia-Gimenez E, Lopez ML, Andrio A, Aguilella VM (2006) A pH-tunable nanofluidic diode: electrochemical rectification in a reconstituted single ion channel. J Phys Chem B 110(42):21205–21209. doi:10.1021/jp063204w

    Article  CAS  Google Scholar 

  9. Jung Y, Bayley H, Movileanu L (2006) Temperature-responsive protein pores. J Am Chem Soc 128(47):15332–15340. doi:10.1021/ja065827t

    Article  CAS  Google Scholar 

  10. Powell MR, Sullivan M, Vlassiouk I, Constantin D, Sudre O, Martens CC, Eisenberg RS, Siwy ZS (2008) Nanoprecipitation-assisted ion current oscillations. Nat Nanotechnol 3(1):51–57. doi:10.1038/nnano.2007.420

    Article  CAS  Google Scholar 

  11. Hou X, Guo W, Xia F, Nie FQ, Dong H, Tian Y, Wen LP, Wang L, Cao LX, Yang Y, Xue JM, Song YL, Wang YG, Liu DS, Jiang L (2009) A biomimetic potassium responsive nanochannel: G-Quadruplex DNA conformational switching in a synthetic nanopore. J Am Chem Soc 131(22):7800–7805. doi:10.1021/Ja901574c

    Article  CAS  Google Scholar 

  12. Tian Y, Hou X, Wen L, Guo W, Song Y, Sun H, Wang Y, Jiang L, Zhu D (2010) A biomimetic zinc activated ion channel. Chem Commun 46(10):1682–1684. doi:10.1039/b918006k

    Article  CAS  Google Scholar 

  13. Wang G, Bohaty AK, Zharov I, White HS (2006) Photon gated transport at the glass nanopore electrode. J Am Chem Soc 128(41):13553–13558. doi:10.1021/ja064274j

    Article  CAS  Google Scholar 

  14. Wen LP, Hou X, Tian Y, Nie FQ, Song YL, Zhai J, Jiang L (2010) Bioinspired smart gating of nanochannels toward photoelectric-conversion systems. Adv Mater 22(9):1021–1024. doi:10.1002/adma.200903161

    Article  CAS  Google Scholar 

  15. Schmuhl R, van den Berg A, Blank DHA, ten Elshof JE (2006) Surfactant-modulated switching of molecular transport in nanometer-sized pores of membrane gates. Angew Chem Int Edit 45(20):3341–3345. doi:10.1002/anie.200504579

    Article  CAS  Google Scholar 

  16. Xia F, Guo W, Mao YD, Hou X, Xue JM, Xia HW, Wang L, Song YL, Ji H, Qi OY, Wang YG, Jiang L (2008) Gating of single synthetic nanopores by proton-driven DNA molecular motors. J Am Chem Soc 130(26):8345–8350. doi:10.1021/Ja800266p

    Article  CAS  Google Scholar 

  17. Ali M, Ramirez P, Mafe S, Neumann R, Ensinger W (2009) A pH-tunable nanofluidic diode with a broad range of rectifying properties. ACS Nano 3(3):603–608. doi:10.1021/nn900039f

    Article  CAS  Google Scholar 

  18. Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O (2009) Single conical nanopores displaying pH-tunable rectifying characteristics. Manipulating ionic transport with zwitterionic polymer brushes. J Am Chem Soc 131(6):2070–2071. doi:10.1021/ja8086104

    Article  CAS  Google Scholar 

  19. Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O (2009) Synthetic proton-gated ion channels via single solid-state nanochannels modified with responsive polymer brushes. Nano Lett 9(7):2788–2793. doi:10.1021/nl901403u

    Article  CAS  Google Scholar 

  20. Hou X, Liu Y, Dong H, Yang F, Li L, Jiang L (2010) A pH-gating ionic transport nanodevice: asymmetric chemical modification of single nanochannels. Adv Mater 22(22):2440–2443. doi:10.1002/adma.200904268

    Article  CAS  Google Scholar 

  21. Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O (2010) Proton-regulated rectified ionic transport through solid-state conical nanopores modified with phosphate-bearing polymer brushes. Chem Commun 46(11):1908–1910. doi:10.1039/b920870d

    Article  CAS  Google Scholar 

  22. Keyser UF, Koeleman BN, Van Dorp S, Krapf D, Smeets RMM, Lemay SG, Dekker NH, Dekker C (2006) Direct force measurements on DNA in a solid-state nanopore. Nat Phys 2 (7):473–477. doi: 10.1038/Nphys344

    Google Scholar 

  23. Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O (2009) Ionic transport through single solid-state nanopores controlled with thermally nanoactuated macromolecular gates. Small 5(11):1287–1291. doi:10.1002/smll.200801318

    Article  CAS  Google Scholar 

  24. Guo W, Xia HW, Xia F, Hou X, Cao LX, Wang L, Xue JM, Zhang GZ, Song YL, Zhu DB, Wang YG, Jiang L (2010) Current rectification in temperature-responsive single nanopores. ChemPhysChem 11(4):859–864. doi:10.1002/cphc.200900989

    Article  CAS  Google Scholar 

  25. Huh D, Mills KL, Zhu X, Burns MA, Thouless MD, Takayama S (2007) Tuneable elastomeric nanochannels for nanofluidic manipulation. Nat Mater 6(6):424–428. doi:10.1038/nmat1907

    Article  CAS  Google Scholar 

  26. Savariar EN, Krishnamoorthy K, Thayumanavan S (2008) Molecular discrimination inside polymer nanotubules. Nat Nanotechnol 3(2):112–117. doi:10.1038/nnano.2008.6

    Article  CAS  Google Scholar 

  27. Siwy ZS, Howorka S (2010) Engineered voltage-responsive nanopores. Chem Soc Rev 39(3):1115–1132. doi:10.1039/b909105j

    Article  CAS  Google Scholar 

  28. Gyurcsanyi RE (2008) Chemically-modified nanopores for sensing. Trac-Trend Anal Chem 27(7):627–639. doi:10.1016/j.trac.2008.06.002

    Article  CAS  Google Scholar 

  29. Nishizawa M, Menon VP, Martin CR (1995) Metal nanotubule membranes with electrochemically switchable ion-transport selectivity. Science 268(5211):700–702. doi:10.1126/science.268.5211.700

    Article  CAS  Google Scholar 

  30. Vlassiouk I, Siwy ZS (2007) Nanofluidic diode. Nano Lett 7(3):552–556. doi:10.1021/nl062924b

    Article  CAS  Google Scholar 

  31. Ali M, Yameen B, Neumann R, Ensinger W, Knoll W, Azzaroni O (2008) Biosensing and supramolecular bioconjugation in single conical polymer nanochannels. Facile incorporation of biorecognition elements into nanoconfined geometries. J Am Chem Soc 130(48):16351–16357. doi:10.1021/ja8071258

    Article  CAS  Google Scholar 

  32. Rothman JE, Lenard J (1977) Membrane asymmetry. Science 195(4280):743–753

    Article  CAS  Google Scholar 

  33. Shaw RS, Packard N, Schroter M, Swinney HL (2007) Geometry-induced asymmetric diffusion. Proc Natl Acad Sci USA 104(23):9580–9584. doi:10.1073/pnas.0703280104

    Article  CAS  Google Scholar 

  34. Kalman EB, Sudre O, Vlassiouk I, Siwy ZS (2009) Control of ionic transport through gated single conical nanopores. Anal Bioanal Chem 394(2):413–419. doi:10.1007/s00216-008-2545-3

    Article  CAS  Google Scholar 

  35. Hou X, Dong H, Zhu DB, Jiang L (2010) Fabrication of stable single nanochannels with controllable ionic rectification. Small 6 (3):361–365. doi: 10.1002/smll.200901701

    Google Scholar 

  36. Ito Y, Park YS (2000) Signal-responsive gating of porous membranes by polymer brushes. Polym Adv Technol 11(3):136–144. doi:10.1002/1099-1581(200003)11:3<136:aid-pat961>3.0.co;2-f

    Article  CAS  Google Scholar 

  37. Apel P (2001) Track etching technique in membrane technology. Radiat Meas 34(1–6):559–566. doi:10.1016/s1350-4487(01)00228-1

    Article  CAS  Google Scholar 

  38. Kalman EB, Vlassiouk I, Siwy ZS (2008) Nanofluidic bipolar transistors. Adv Mater 20(2):293–297. doi:10.1002/adma.200701867

    Article  CAS  Google Scholar 

  39. Xie Y, Wang X, Xue J, Jin K, Chen L, Wang Y (2008) Electric energy generation in single track-etched nanopores. Appl Phys Lett 93(16). doi:16311 10.1063/1.3001590

  40. Pan YV, Wesley RA, Luginbuhl R, Denton DD, Ratner BD (2001) Plasma polymerized N-isopropylacrylamide: synthesis and characterization of a smart thermally responsive coating. Biomacromolecules 2(1):32–36. doi:10.1021/bm0000642

    Article  CAS  Google Scholar 

  41. Sun TL, Wang GJ, Feng L, Liu BQ, Ma YM, Jiang L, Zhu DB (2004) Reversible switching between superhydrophilicity and superhydrophobicity. Angew Chem Int Edit 43(3):357–360. doi:10.1002/anie.200352565

    Article  CAS  Google Scholar 

  42. Lee JW, Kim SY, Kim SS, Lee YM, Lee KH, Kim SJ (1999) Synthesis and characteristics of interpenetrating polymer network hydrogel composed of chitosan and poly (acrylic acid). J Appl Polym Sci 73(1):113–120. doi:10.1002/(sici)1097-4628(19990705)73:1<113:aid-app13>3.3.co;2-4

    Article  CAS  Google Scholar 

  43. Siwy ZS (2006) Ion-current rectification in nanopores and nanotubes with broken symmetry. Adv Funct Mater 16(6):735–746. doi:10.1002/adfm.200500471

    Article  CAS  Google Scholar 

  44. Kasianowicz JJ, Brandin E, Branton D, Deamer DW (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci USA 93(24):13770–13773. doi:10.1073/pnas.93.24.13770

    Article  CAS  Google Scholar 

  45. Sowerby SJ, Broom MF, Petersen GB (2007) Dynamically resizable nanometre-scale apertures for molecular sensing. Sensor Actuat B-Chem 123(1):325–330. doi:10.1016/j.snb.2006.08.031

    Article  CAS  Google Scholar 

  46. Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang X, Jovanovich SB, Krstic PS, Lindsay S, Ling XS, Mastrangelo CH, Meller A, Oliver JS, Pershin YV, Ramsey JM, Riehn R, Soni GV, Tabard-Cossa V, Wanunu M, Wiggin M, Schloss JA (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26(10):1146–1153. doi:10.1038/nbt.1495

    Article  CAS  Google Scholar 

  47. Xia F, Jiang L (2008) Bio-inspired, smart, multiscale interfacial materials. Adv Mater 20(15):2842–2858. doi:10.1002/adma.200800836

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Hou .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hou, X. (2013). Asymmetric Temperature/pH Dual-Responsive Symmetric Hour-Glass Shaped Single Nanochannel. In: Bio-inspired Asymmetric Design and Building of Biomimetic Smart Single Nanochannels. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38050-1_4

Download citation

Publish with us

Policies and ethics