Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Over millions of years, complex processes of intelligent control have been evolved in nature. Structures from nature have remarkable properties, many of which have inspired laboratory research. Bio-inspired materials and devices are attracting increasing interest because of their unique properties, which have paved the way to many significant applications [1–3]. For example, ion channels play a very important role in basic biochemical processes and maintaining normal physiological conditions in cells. In this chapter, it is intended to utilize a specific responsive behavior as an example to demonstrate the feasibility of various design strategies for building bio-inspired artificial functional nanochannels. This specific responsive behavior is to regulate ionic transport properties inside the single nanopore or nanochannel. It is also intended to provide an overview of this fascinating research filed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Munch E, Launey ME, Alsem DH, Saiz E, Tomsia AP, Ritchie RO (2008) Tough, bio-inspired hybrid materials. Science 322(5907):1516–1520. doi:10.1126/science.1164865

    Article  CAS  Google Scholar 

  2. Xia F, Jiang L (2008) Bio-inspired, smart, multiscale interfacial materials. Adv Mater 20(15):2842–2858. doi:10.1002/adma.200800836

    Article  CAS  Google Scholar 

  3. Lee H, Lee BP, Messersmith PB (2007) A reversible wet/dry adhesive inspired by mussels and geckos. Nature 448(7151):338–341. doi:10.1038/nature05968

    Article  CAS  Google Scholar 

  4. Gouaux E, MacKinnon R (2005) Principles of selective ion transport in channels and pumps. Science 310(5753):1461–1465. doi:10.1126/science.1113666

    Article  CAS  Google Scholar 

  5. Storm AJ, Chen JH, Ling XS, Zandbergen HW, Dekker C (2003) Fabrication of solid-state nanopores with single-nanometre precision. Nat Mater 2(8):537–540. doi:10.1038/nmat941

    Article  CAS  Google Scholar 

  6. Dekker C (2007) Solid-state nanopores. Nat Nanotechnol 2(4):209–215. doi:10.1038/nnano.2007.27

    Article  CAS  Google Scholar 

  7. Martin CR, Siwy ZS (2007) Learning nature’s way: biosensing with synthetic nanopores. Science 317(5836):331–332. doi:10.1126/science.1146126

    Article  CAS  Google Scholar 

  8. Siwy ZS, Howorka S (2010) Engineered voltage-responsive nanopores. Chem Soc Rev 39(3):1115–1132. doi:10.1039/b909105j

    Article  CAS  Google Scholar 

  9. Hou X, Guo W, Jiang L (2011) Biomimetic smart nanopores and nanochannels. Chem Soc Rev 40(5):2385–2401. doi:10.1039/C0cs00053a

    Article  CAS  Google Scholar 

  10. de la Escosura-Muniz A, Merkoci A (2012) Nanochannels preparation and application in biosensing. ACS Nano 6(9):7556–7583. doi:10.1021/nn301368z

    Article  CAS  Google Scholar 

  11. Zhang MH, Zhai J (2012) Biomimetic smart nanoehannels for energy conversion. Prog Chem 24(4):463–470

    CAS  Google Scholar 

  12. Sexton LT, Horne LP, Martin CR (2007) Developing synthetic conical nanopores for biosensing applications. Mol BioSyst 3(10):667–685. doi:10.1039/b708725j

    Article  CAS  Google Scholar 

  13. Hou X, Jiang L (2009) Learning from nature: building bio-inspired smart nanochannels. ACS Nano 3(11):3339–3342. doi:10.1021/Nn901402b

    Article  CAS  Google Scholar 

  14. Howorka S, Siwy Z (2009) Nanopore analytics: sensing of single molecules. Chem Soc Rev 38(8):2360–2384. doi:10.1039/b813796j

    Article  CAS  Google Scholar 

  15. Wen LP, Hou X, Tian Y, Nie FQ, Song YL, Zhai J, Jiang L (2010) Bioinspired smart gating of nanochannels toward photoelectric-conversion systems. Adv Mater 22(9):1021–1024. doi:10.1002/adma.200903161

    Article  CAS  Google Scholar 

  16. Inglis DW, Goldys EM, Calander NP (2011) Simultaneous concentration and separation of proteins in a nanochannel. Angew Chem Int Edit 50(33):7546–7550. doi:10.1002/anie.201100236

    Article  CAS  Google Scholar 

  17. Ali M, Schiedt B, Healy K, Neumann R, Ensinger A (2008) Modifying the surface charge of single track-etched conical nanopores in polyimide. Nanotechnology 19(8). http://iopscience.iop.org/0957-4484/19/8/085713/ doi:10.1088/0957-4484/19/8/085713

  18. Ali M, Yameen B, Neumann R, Ensinger W, Knoll W, Azzaroni O (2008) Biosensing and supramolecular bioconjugation in single conical polymer nanochannels. Facile incorporation of biorecognition elements into nanoconfined geometries. J Am Chem Soc 130(48):16351–16357. doi:10.1021/ja8071258

    Article  CAS  Google Scholar 

  19. Ali M, Yameen B, Cervera J, Ramirez P, Neumann R, Ensinger W, Knoll W, Azzaroni O (2010) Layer-by-layer assembly of polyelectrolytes into ionic current rectifying solid-state nanopores: insights from theory and experiment. J Am Chem Soc 132(24):8338–8348. doi:10.1021/ja101014y

    Article  CAS  Google Scholar 

  20. Kalman EB, Sudre O, Vlassiouk I, Siwy ZS (2009) Control of ionic transport through gated single conical nanopores. Anal Bioanal Chem 394(2):413–419. doi:10.1007/s00216-008-2545-3

    Article  CAS  Google Scholar 

  21. Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O (2009) Synthetic proton-gated ion channels via single solid-state nanochannels modified with responsive polymer brushes. Nano Lett 9(7):2788–2793. doi:10.1021/nl901403u

    Article  CAS  Google Scholar 

  22. Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O (2009) Ionic transport through single solid-state nanopores controlled with thermally nanoactuated macromolecular gates. Small 5(11):1287–1291. doi:10.1002/smll.200801318

    Article  CAS  Google Scholar 

  23. Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O (2010) Proton-regulated rectified ionic transport through solid-state conical nanopores modified with phosphate-bearing polymer brushes. Chem Commun 46(11):1908–1910. doi:10.1039/b920870d

    Article  CAS  Google Scholar 

  24. Umehara S, Pourmand N, Webb CD, Davis RW, Yasuda K, Karhanek M (2006) Current rectification with poly-l-lysine-coated quartz nanopipettes. Nano Lett 6(11):2486–2492. doi:10.1021/nl061681k

    Article  CAS  Google Scholar 

  25. Hou X, Guo W, Xia F, Nie FQ, Dong H, Tian Y, Wen LP, Wang L, Cao LX, Yang Y, Xue JM, Song YL, Wang YG, Liu DS, Jiang L (2009) A biomimetic potassium responsive nanochannel: G-Quadruplex DNA conformational switching in a synthetic nanopore. J Am Chem Soc 131(22):7800–7805. doi:10.1021/Ja901574c

    Article  CAS  Google Scholar 

  26. Wendell D, Jing P, Geng J, Subramaniam V, Lee TJ, Montemagno C, Guo P (2009) Translocation of double-stranded DNA through membrane-adapted phi29 motor protein nanopores. Nat Nanotechnol 4(11):765–772. doi:10.1038/nnano.2009.259

    Article  CAS  Google Scholar 

  27. Sisson AL, Shah MR, Bhosale S, Matile S (2006) Synthetic ion channels and pores (2004–2005). Chem Soc Rev 35(12):1269–1286. doi:10.1039/b512423a

    Article  CAS  Google Scholar 

  28. Kasianowicz JJ, Brandin E, Branton D, Deamer DW (1996) Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci USA 93(24):13770–13773. doi:10.1073/pnas.93.24.13770

    Article  CAS  Google Scholar 

  29. Keyser UF, Koeleman BN, Van Dorp S, Krapf D, Smeets RMM, Lemay SG, Dekker NH, Dekker C (2006) Direct force measurements on DNA in a solid-state nanopore. Nat Phys 2(7):473–477. doi:10.1038/Nphys344

    Article  CAS  Google Scholar 

  30. Apel P (2001) Track etching technique in membrane technology. Radiat Meas 34(1–6):559–566. doi:10.1016/s1350-4487(01)00228-1

    Article  CAS  Google Scholar 

  31. Hou X, Dong H, Zhu DB, Jiang L (2010) Fabrication of stable single nanochannels with controllable ionic rectification. Small 6(3):361–365. doi:10.1002/smll.200901701

    Article  CAS  Google Scholar 

  32. White RJ, Ervin EN, Yang T, Chen X, Daniel S, Cremer PS, White HS (2007) Single ion-channel recordings using glass nanopore membranes. J Am Chem Soc 129(38):11766–11775. doi:10.1021/ja073174q

    Article  CAS  Google Scholar 

  33. Lathrop DK, Ervin EN, Barrall GA, Keehan MG, Kawano R, Krupka MA, White HS, Hibbs AH (2010) Monitoring the escape of DNA from a nanopore using an alternating current signal. J Am Chem Soc 132(6):1878–1885. doi:10.1021/ja906951g

    Article  CAS  Google Scholar 

  34. Zhang B, Zhang YH, White HS (2004) The nanopore electrode. Anal Chem 76(21):6229–6238. doi:10.1021/ac049288r

    Article  CAS  Google Scholar 

  35. Yuan JH, He FY, Sun DC, Xia XH (2004) A simple method for preparation of through-hole porous anodic alumina membrane. Chem Mater 16(10):1841–1844. doi:10.1021/cm049971u

    Article  CAS  Google Scholar 

  36. Li J, Stein D, McMullan C, Branton D, Aziz MJ, Golovchenko JA (2001) Ion-beam sculpting at nanometre length scales. Nature 412(6843):166–169. doi:10.1038/35084037

    Article  CAS  Google Scholar 

  37. Wu S, Park SR, Ling XS (2006) Lithography-free formation of nanopores in plastic membranes using laser heating. Nano Lett 6(11):2571–2576. doi:10.1021/nl0619498

    Article  CAS  Google Scholar 

  38. Kalman EB, Vlassiouk I, Siwy ZS (2008) Nanofluidic bipolar transistors. Adv Mater 20(2):293–297. doi:10.1002/adma.200701867

    Article  CAS  Google Scholar 

  39. Gyurcsanyi RE (2008) Chemically-modified nanopores for sensing. Trac-Trends Anal Chem 27(7):627–639. doi:10.1016/j.trac.2008.06.002

    Article  CAS  Google Scholar 

  40. Matile S, Som A, Sorde N (2004) Recent synthetic ion channels and pores. Tetrahedron 60(31):6405–6435. doi:10.1016/j.tet.2004.05.052

    Article  CAS  Google Scholar 

  41. Baker LA, Jin P, Martin CR (2005) Biomaterials and biotechnologies based on nanotube membranes. Crit Rev Solid State Mater Sci 30(4):183–205. doi:10.1080/10408430500198169

    Article  CAS  Google Scholar 

  42. Huh D, Mills KL, Zhu X, Burns MA, Thouless MD, Takayama S (2007) Tuneable elastomeric nanochannels for nanofluidic manipulation. Nat Mater 6(6):424–428. doi:10.1038/nmat1907

    Article  CAS  Google Scholar 

  43. Siwy Z, Apel P, Dobrev D, Neumann R, Spohr R, Trautmann C, Voss K (2003) Ion transport through asymmetric nanopores prepared by ion track etching. Nucl Instrum Methods Phys Res Sect B-Beam Interact Mater At 208:143–148. doi:10.1016/s0168-583x(03)00884-x

    Article  CAS  Google Scholar 

  44. Apel PY, Blonskaya IV, Dmitriev SN, Mamonova TI, Orelovitch OL, Sartowska B, Yamauchi Y (2008) Surfactant-controlled etching of ion track nanopores and its practical applications in membrane technology. Radiat Meas 43:S552–S559. doi:10.1016/j.radmeas.2008.04.057

    Article  CAS  Google Scholar 

  45. Apel PY, Blonskaya IV, Dmitriev SN, Orelovitch OL, Sartowska B (2006) Structure of polycarbonate track-etch membranes: origin of the paradoxical pore shape. J Membr Sci 282(1–2):393–400. doi:10.1016/j.memsci.2006.05.045

    Article  CAS  Google Scholar 

  46. Apel PY, Korchev YE, Siwy Z, Spohr R, Yoshida M (2001) Diode-like single-ion track membrane prepared by electro-stopping. Nucl Instrum Methods Phys Res Sect B-Beam Interact Mater At 184(3):337–346. doi:10.1016/s0168-583x(01)00722-4

    Article  CAS  Google Scholar 

  47. Hou X, Zhang HC, Jiang L (2012) Building bio-inspired artificial functional nanochannels: from symmetric to asymmetric modification. Angew Chem Int Ed 51(22):5296–5307. doi:10.1002/anie.201104904

    Article  CAS  Google Scholar 

  48. Harrell CC, Siwy ZS, Martin CR (2006) Conical nanopore membranes: controlling the nanopore shape. Small 2(2):194–198. doi:10.1002/smll.200500196

    Article  CAS  Google Scholar 

  49. Mallory GO, Hajdu JB (1990) Electroless plating: fundamentals and applications. American Electroplaters and Surface Finishers Society, Orlando

    Google Scholar 

  50. Nishizawa M, Menon VP, Martin CR (1995) Metal nanotubule membranes with electrochemically switchable ion-transport selectivity. Science 268(5211):700–702. doi:10.1126/science.268.5211.700

    Article  CAS  Google Scholar 

  51. Menon VP, Martin CR (1995) Fabrication and evaluation of nanoelectrode ensembles. Anal Chem 67(13):1920–1928. doi:10.1021/ac00109a003

    Article  CAS  Google Scholar 

  52. Meerakker JEAM (1981) On the mechanism of electroless plating. I. Oxidation of formaldehyde at different electrode surfaces. J Appl Electrochem 11(3):387–393. doi:10.1007/bf00613959

    Article  Google Scholar 

  53. Li H, Lin H, Xie S, Dai W, Qiao M, Lu Y, Li H (2008) Ordered mesoporous Ni nanowires with enhanced hydrogenation activity prepared by electroless plating on functionalized SBA-15. Chem Mater 20(12):3936–3943. doi:10.1021/cm800790h

    Article  CAS  Google Scholar 

  54. Krulik GA (1978) Electroless plating of plastics. J Chem Educ 55(6):361–365

    Article  CAS  Google Scholar 

  55. Pernstich KP, Schenker M, Weibel F, Rossi A, Caseri WR (2010) Electroless plating of ultrathin films and mirrors of platinum nanoparticles onto polymers, metals, and ceramics. Acs Appl Mater Interfaces 2(3):639–643. doi:10.1021/am900918y

    Article  CAS  Google Scholar 

  56. Xia F, Guo W, Mao YD, Hou X, Xue JM, Xia HW, Wang L, Song YL, Ji H, Qi OY, Wang YG, Jiang L (2008) Gating of single synthetic nanopores by proton-driven DNA molecular motors. J Am Chem Soc 130(26):8345–8350. doi:10.1021/Ja800266p

    Article  CAS  Google Scholar 

  57. Yameen B, Ali M, Neumann R, Ensinger W, Knoll W, Azzaroni O (2009) Single conical nanopores displaying pH-tunable rectifying characteristics. Manipulating ionic transport with zwitterionic polymer brushes. J Am Chem Soc 131(6):2070–2071. doi:10.1021/ja8086104

    Article  CAS  Google Scholar 

  58. Ali M, Ramirez P, Mafe S, Neumann R, Ensinger W (2009) A pH-tunable nanofluidic diode with a broad range of rectifying properties. ACS Nano 3(3):603–608. doi:10.1021/nn900039f

    Article  CAS  Google Scholar 

  59. Ali M, Mafe S, Ramirez P, Neumann R, Ensinger W (2009) Logic gates using nanofluidic diodes based on conical nanopores functionalized with polyprotic acid chains. Langmuir 25(20):11993–11997. doi:10.1021/la902792f

    Article  CAS  Google Scholar 

  60. Han CP, Hou X, Zhang HC, Guo W, Li HB, Jiang L (2011) Enantioselective recognition in biomimetic single artificial nanochannels. J Am Chem Soc 133(20):7644–7647. doi:10.1021/Ja2004939

    Article  CAS  Google Scholar 

  61. Ali M, Schiedt B, Neumann R, Ensinger W (2010) Biosensing with Functionalized Single Asymmetric Polymer Nanochannels. Macromol Biosci 10(1):28–32. doi:10.1002/mabi.200900198

    Article  CAS  Google Scholar 

  62. Ali M, Neumann R, Ensinger W (2010) Sequence-specific recognition of DNA oligomer using peptide nucleic acid (PNA)-modified synthetic ion channels: PNA/DNA hybridization in nanoconfined environment. ACS Nano 4(12):7267–7274. doi:10.1021/nn102119q

    Article  CAS  Google Scholar 

  63. Wang S, Liu H, Liu D, Ma X, Fang X, Jiang L (2007) Enthalpy-driven three-state switching of a superhydrophilic/superhydrophobic surface. Angew Chem Int Ed 46(21):3915–3917. doi:10.1002/anie.200700439

    Article  CAS  Google Scholar 

  64. Harrell CC, Kohli P, Siwy Z, Martin CR (2004) DNA-Nanotube artificial ion channels. J Am Chem Soc 126(48):15646–15647. doi:10.1021/ja044948v

    Article  CAS  Google Scholar 

  65. Guo W, Xia HW, Xia F, Hou X, Cao LX, Wang L, Xue JM, Zhang GZ, Song YL, Zhu DB, Wang YG, Jiang L (2010) Current rectification in temperature-responsive single nanopores. ChemPhysChem 11(4):859–864. doi:10.1002/cphc.200900989

    Article  CAS  Google Scholar 

  66. Hulteen JC, Jirage KB, Martin CR (1998) Introducing chemical transport selectivity into gold nanotubule membranes. J Am Chem Soc 120(26):6603–6604. doi:10.1021/ja980045o

    Article  CAS  Google Scholar 

  67. Jirage KB, Hulteen JC, Martin CR (1999) Effect of thiol chemisorption on the transport properties of gold nanotubule membranes. Anal Chem 71(21):4913–4918. doi:10.1021/ac990615i

    Article  CAS  Google Scholar 

  68. Chun KY, Stroeve P (2002) Protein transport in nanoporous membranes modified with self-assembled monolayers of functionalized thiols. Langmuir 18(12):4653–4658. doi:10.1021/la011250b

    Article  CAS  Google Scholar 

  69. Ku J-R, Lai S-M, Ileri N, Ramirez P, Mafe S, Stroeve P (2007) pH and ionic strength effects on amino acid transport through Au-nanotubule membranes charged with self-assembled monolayers. J Phys Chem C 111(7):2965–2973. doi:10.1021/jp066944d

    Article  CAS  Google Scholar 

  70. Lee SB, Martin CR (2001) pH-switchable, ion-permselective gold nanotubule membrane based on chemisorbed cysteine. Anal Chem 73(4):768–775. doi:10.1021/ac0008901

    Article  CAS  Google Scholar 

  71. Lee SB, Martin CR (2001) Controlling the transport properties of gold nanotubule membranes using chemisorbed thiols. Chem Mater 13(10):3236–3244. doi:10.1021/cm0101071

    Article  CAS  Google Scholar 

  72. Jagerszki G, Gyurcsanyi RE, Hofler L, Pretsch E (2007) Hybridization-modulated ion fluxes through peptide-nucleic-acid-functionalized gold nanotubes. A new approach to quantitative label-free DNA analysis. Nano Lett 7(6):1609–1612. doi:10.1021/nl0705438

    Article  CAS  Google Scholar 

  73. Kim BY, Swearingen CB, Ho J-aA, Romanova EV, Bohn PW, Sweedler JV (2007) Direct immobilization of Fab’ in nanocapillaries for manipulating mass-limited samples. J Am Chem Soc 129(24):7620–7626. doi:10.1021/ja070041w

    Article  CAS  Google Scholar 

  74. Gyurcsanyi RE, Vigassy T, Pretsch E (2003) Biorecognition-modulated ion fluxes through functionalized gold nanotubules as a novel label-free biosensing approach. Chem Commun 20:2560–2561. doi:10.1039/b307393a

    Article  CAS  Google Scholar 

  75. Jagerszki G, Takacs A, Bitter I, Gyurcsanyi RE (2011) Solid-State ion channels for potentiometric sensing. Angew Chem Int Ed 50(7):1656–1659. doi:10.1002/anie.201003849

    Article  CAS  Google Scholar 

  76. Siwy Z, Trofin L, Kohli P, Baker LA, Trautmann C, Martin CR (2005) Protein biosensors based on biofunctionalized conical gold nanotubes. J Am Chem Soc 127(14):5000–5001. doi:10.1021/ja043910f

    Article  CAS  Google Scholar 

  77. Alem H, Blondeau F, Glinel K, Demoustier-Champagne S, Jonas AM (2007) Layer-by-layer assembly of polyelectrolytes in nanopores. Macromolecules 40(9):3366–3372. doi:10.1021/ma0703251

    Article  CAS  Google Scholar 

  78. Schmuhl R, van den Berg A, Blank DHA, ten Elshof JE (2006) Surfactant-modulated switching of molecular transport in nanometer-sized pores of membrane gates. Angew Chem Int Ed 45(20):3341–3345. doi:10.1002/anie.200504579

    Article  CAS  Google Scholar 

  79. Tian Y, Hou X, Jiang L (2011) Biomimetic ionic rectifier systems: Asymmetric modification of single nanochannels by ion sputtering technology. J Electroanal Chem 656(1–2):231–236. doi:10.1016/j.jelechem.2010.11.005

    CAS  Google Scholar 

  80. Lau KKS, Gleason KK (2006) Initiated chemical vapor deposition (iCVD) of poly(alkyl acrylates): an experimental study. Macromolecules 39(10):3688–3694. doi:10.1021/ma0601619

    Article  CAS  Google Scholar 

  81. Asatekin A, Gleason KK (2011) Polymeric nanopore membranes for hydrophobicity-based separations by conformal Initiated chemical vapor deposition. Nano Lett 11(2):677–686. doi:10.1021/nl103799d

    Article  CAS  Google Scholar 

  82. Hou X, Liu Y, Dong H, Yang F, Li L, Jiang L (2010) A pH-gating ionic transport nanodevice: asymmetric chemical modification of single nanochannels. Adv Mater 22(22):2440–2443. doi:10.1002/adma.200904268

    Article  CAS  Google Scholar 

  83. Hou X, Yang F, Li L, Song Y, Jiang L, Zhu D (2010) A biomimetic asymmetric responsive single nanochannel. J Am Chem Soc 132(33):11736–11742. doi:10.1021/ja1045082

    Article  CAS  Google Scholar 

  84. Vlassiouk I, Siwy ZS (2007) Nanofluidic diode. Nano Lett 7(3):552–556. doi:10.1021/nl062924b

    Article  CAS  Google Scholar 

  85. Vlassiouk I, Kozel TR, Siwy ZS (2009) Biosensing with nanofluidic diodes. J Am Chem Soc 131(23):8211–8220. doi:10.1021/ja901120f

    Article  CAS  Google Scholar 

  86. Wang L, Yan Y, Xie Y, Chen L, Xue J, Yan S, Wang Y (2011) A method to tune the ionic current rectification of track-etched nanopores by using surfactant. Phys Chem Chem Phys 13(2):576–581. doi:10.1039/c0cp00587h

    Article  CAS  Google Scholar 

  87. Siwy Z, Apel P, Baur D, Dobrev DD, Korchev YE, Neumann R, Spohr R, Trautmann C, Voss KO (2003) Preparation of synthetic nanopores with transport properties analogous to biological channels. Surf Sci 532:1061–1066. doi:10.1016/s0039-6028(03)00448-5

    Article  CAS  Google Scholar 

  88. Martin CR, Nishizawa M, Jirage K, Kang MS, Lee SB (2001) Controlling ion-transport selectivity in gold nanotubule membranes. Adv Mater 13(18):1351–1362. doi:10.1002/1521-4095(200109)13:18<1351:aid-adma1351>3.0.co;2-w

    Article  CAS  Google Scholar 

  89. Alcaraz A, Ramirez P, Garcia-Gimenez E, Lopez ML, Andrio A, Aguilella VM (2006) A pH-tunable nanofluidic diode: Electrochemical rectification in a reconstituted single ion channel. J Phys Chem B 110(42):21205–21209. doi:10.1021/jp063204w

    Article  CAS  Google Scholar 

  90. Tsekouras G, Johansson O, Lomoth R (2009) A surface-attached Ru complex operating as a rapid bistable molecular switch. Chem Commun 23:3425–3427. doi:10.1039/b904248b

    Article  CAS  Google Scholar 

  91. Wen L, Hou X, Tian Y, Zhai J, Jiang L (2010) Bio-inspired photoelectric conversion based on smart-gating nanochannels. Adv Funct Mater 20(16):2636–2642. doi:10.1002/adfm.201000239

    Article  CAS  Google Scholar 

  92. Siwy Z, Heins E, Harrell CC, Kohli P, Martin CR (2004) Conical-nanotube ion-current rectifiers: the role of surface charge. J Am Chem Soc 126(35):10850–10851. doi:10.1021/ja047675c

    Article  CAS  Google Scholar 

  93. Savariar EN, Sochat MM, Klaikherd A, Thayumanavan S (2009) Functional group density and recognition in polymer nanotubes. Angew Chem Int Ed 48(1):110–114. doi:10.1002/anie.200804136

    Article  CAS  Google Scholar 

  94. Li YF, Sen D (1997) Toward an efficient DNAzyme. Biochemistry 36(18):5589–5599. doi:10.1021/bi962694n

    Article  CAS  Google Scholar 

  95. Yamaguchi T, Ito T, Sato T, Shinbo T, Nakao S (1999) Development of a fast response molecular recognition ion gating membrane. J Am Chem Soc 121(16):4078–4079. doi:10.1021/ja984170b

    Article  CAS  Google Scholar 

  96. Siwy ZS (2006) Ion-current rectification in nanopores and nanotubes with broken symmetry. Adv Funct Mater 16(6):735–746. doi:10.1002/adfm.200500471

    Article  CAS  Google Scholar 

  97. Vlassiouk I, Smirnov S, Siwy Z (2008) Ionic selectivity of single nanochannels. Nano Lett 8(7):1978–1985. doi:10.1021/Nl800949k

    Article  CAS  Google Scholar 

  98. Siwy Z, Fulinski A (2002) Fabrication of a synthetic nanopore ion pump. Phys Rev Lett 89(19):198103. doi:10.1103/PhysRevLett.89.198103

    Google Scholar 

  99. Siwy Z, Fulinski A (2004) A nanodevice for rectification and pumping ions. Am J Phys 72(5):567–574. doi:10.1119/1.1648328

    Article  CAS  Google Scholar 

  100. Woermann D (2004) Electrochemical transport properties of a cone-shaped nanopore: revisited. Phys Chem Chem Phys 6(12):3130–3132. doi:10.1039/B316166h

    Article  CAS  Google Scholar 

  101. Woermann D (2003) Electrochemical transport properties of a cone-shaped nanopore: high and low electrical conductivity states depending on the sign of an applied electrical potential difference. Phys Chem Chem Phys 5(9):1853–1858. doi:10.1039/B301021j

    Article  CAS  Google Scholar 

  102. Cervera J, Schiedt B, Ramirez P (2005) A Poisson/Nernst-Planck model for ionic transport through synthetic conical nanopores. Europhys Lett 71(1):35–41. doi:10.1209/epl/i2005-10054-x

    Article  CAS  Google Scholar 

  103. Cervera J, Schiedt B, Neumann R, Mafe S, Ramirez P (2006) Ionic conduction, rectification, and selectivity in single conical nanopores. J Chem Phys 124(10):104706. doi:10.1063/1.2179797

    Article  CAS  Google Scholar 

  104. Cervera J, Alcaraz A, Schiedt B, Neumann R, Ramirez P (2007) Asymmetric selectivity of synthetic conical nanopores probed by reversal potential measurements. J Phys Chem C 111(33):12265–12273. doi:10.1021/Jp071884c

    Article  CAS  Google Scholar 

  105. Vlassiouk I, Smirnov S, Siwy Z (2008) Nanofluidic ionic diodes. Comparison of analytical and numerical solutions. Acs Nano 2(8):1589–1602. doi:10.1021/nn800306u

    Article  CAS  Google Scholar 

  106. Cruz-Chu ER, Ritz T, Siwy ZS, Schulten K (2009) Molecular control of ionic conduction in polymer nanopores. Faraday Discuss 143:47–62. doi:10.1039/B906279n

    Article  CAS  Google Scholar 

  107. Tagliazucchi M, Azzaroni O, Szleifer I (2010) Responsive polymers end-tethered in solid-state nanochannels: when nanoconfinement really matters. J Am Chem Soc 132(35):12404–12411. doi:10.1021/ja104152g

    Article  CAS  Google Scholar 

  108. Wei C, Bard AJ, Feldberg SW (1997) Current rectification at quartz nanopipet electrodes. Anal Chem 69(22):4627–4633. doi:10.1021/ac970551g

    Article  CAS  Google Scholar 

  109. Wanunu M, Meller A (2007) Chemically modified solid-state nanopores. Nano Lett 7(6):1580–1585. doi:10.1021/nl070462b

    Article  CAS  Google Scholar 

  110. Huang J, Zhang X, McNaughton PA (2006) Modulation of temperature-sensitive TRP channels. Semin Cell Dev Biol 17(6):638–645. doi:10.1016/j.semcdb.2006.11.002

    Article  CAS  Google Scholar 

  111. Latorre R, Brauchi S, Orta G, Zaelzer C, Vargas G (2007) Thermo TRP channels as modular proteins with allosteric gating. Cell Calcium 42(4–5):427–438. doi:10.1016/j.ceca.2007.04.004

    Article  CAS  Google Scholar 

  112. Jung Y, Bayley H, Movileanu L (2006) Temperature-responsive protein pores. J Am Chem Soc 128(47):15332–15340. doi:10.1021/ja065827t

    Article  CAS  Google Scholar 

  113. Reber N, Kuchel A, Spohr R, Wolf A, Yoshida M (2001) Transport properties of thermo-responsive ion track membranes. J Membr Sci 193(1):49–58. doi:10.1016/s0376-7388(01)00460-4

    Article  CAS  Google Scholar 

  114. Alem H, Duwez A-S, Lussis P, Lipnik P, Jonas AM, Demoustier-Champagne S (2008) Microstructure and thermo-responsive behavior of poly (N-isopropylacrylamide) brushes grafted in nanopores of track-etched membranes. J Membr Sci 308(1–2):75–86. doi:10.1016/j.memsci.2007.09.036

    Article  CAS  Google Scholar 

  115. Lokuge I, Wang X, Bohn PW (2007) Temperature-controlled flow switching in nanocapillary array membranes mediated by poly (N-isopropylacrylamide) polymer brushes grafted by atom transfer radical polymerization. Langmuir 23(1):305–311. doi:10.1021/la060813m

    Article  CAS  Google Scholar 

  116. Banghart M, Borges K, Isacoff E, Trauner D, Kramer RH (2004) Light-activated ion channels for remote control of neuronal firing. Nat Neurosci 7(12):1381–1386. doi:10.1038/nn1356

    Article  CAS  Google Scholar 

  117. Liu NG, Dunphy DR, Atanassov P, Bunge SD, Chen Z, Lopez GP, Boyle TJ, Brinker CJ (2004) Photoregulation of mass transport through a photoresponsive azobenzene-modified nanoporous membrane. Nano Lett 4(4):551–554. doi:10.1021/nl0350783

    Article  CAS  Google Scholar 

  118. Kocer A, Walko M, Meijberg W, Feringa BL (2005) A light-actuated nanovalve derived from a channel protein. Science 309(5735):755–758. doi:10.1126/science.1114760

    Article  CAS  Google Scholar 

  119. Vlassiouk I, Park CD, Vail SA, Gust D, Smirnov S (2006) Control of nanopore wetting by a photochromic spiropyran: A light-controlled valve and electrical switch. Nano Lett 6(5):1013–1017. doi:10.1021/nl060313d

    Article  CAS  Google Scholar 

  120. Zhang QQ, Liu ZY, Hou X, Fan X, Zhai J, Jiang L (2012) Light-regulated ion transport through artificial ion channels based on TiO2 nanotubular arrays. Chem Commun 48(47):5901–5903. doi:10.1039/C2cc32451b

    Article  CAS  Google Scholar 

  121. Wang G, Bohaty AK, Zharov I, White HS (2006) Photon gated transport at the glass nanopore electrode. J Am Chem Soc 128(41):13553–13558. doi:10.1021/ja064274j

    Article  CAS  Google Scholar 

  122. Zhang MH, Hou X, Wang JT, Tian Y, Fan X, Zhai J, Jiang L (2012) Light and pH cooperative nanofluidic diode using a spiropyran-functionalized single nanochannel. Adv Mater 24(18):2424–2428. doi:10.1002/adma.201104536

    Article  CAS  Google Scholar 

  123. Maglia G, Restrepo MR, Mikhailova E, Bayley H (2008) Enhanced translocation of single DNA molecules through alpha-hemolysin nanopores by manipulation of internal charge. Proc Natl Acad Sci USA 105(50):19720–19725. doi:10.1073/pnas.0808296105

    Article  CAS  Google Scholar 

  124. Siwy ZS, Powell MR, Petrov A, Kalman E, Trautmann C, Eisenberg RS (2006) Calcium-induced voltage gating in single conical nanopores. Nano Lett 6(8):1729–1734. doi:10.1021/nl061114x

    Article  CAS  Google Scholar 

  125. Siwy ZS, Powell MR, Kalman E, Astumian RD, Eisenberg RS (2006) Negative incremental resistance induced by calcium in asymmetric nanopores. Nano Lett 6(3):473–477. doi:10.1021/nl0524290

    Article  CAS  Google Scholar 

  126. Powell MR, Sullivan M, Vlassiouk I, Constantin D, Sudre O, Martens CC, Eisenberg RS, Siwy ZS (2008) Nanoprecipitation-assisted ion current oscillations. Nat Nanotechnol 3(1):51–57. doi:10.1038/nnano.2007.420

    Article  CAS  Google Scholar 

  127. Tian Y, Hou X, Wen L, Guo W, Song Y, Sun H, Wang Y, Jiang L, Zhu D (2010) A biomimetic zinc activated ion channel. Chem Commun 46(10):1682–1684. doi:10.1039/b918006k

    Article  CAS  Google Scholar 

  128. Davies PA, Wang W, Hales TG, Kirkness EF (2003) A novel class of ligand-gated ion channel is activated by Zn2+. J Biol Chem 278(2):712–717. doi:10.1074/jbc.M208814200

    Article  CAS  Google Scholar 

  129. Tian Y, Wen LP, Hou X, Hou GL, Jiang L (2012) Bioinspired ion-transport properties of solid-state single nanochannels and their applications in sensing. ChemPhysChem 13(10):2455–2470. doi:10.1002/cphc.201200057

    Article  CAS  Google Scholar 

  130. Griffiths J (2008) The realm of the nanopore. Anal Chem 80(1):23–27. doi:10.1021/ac085995z

    Article  CAS  Google Scholar 

  131. Choi Y, Baker LA, Hillebrenner H, Martin CR (2006) Biosensing with conically shaped nanopores and nanotubes. Phys Chem Chem Phys 8(43):4976–4988. doi:10.1039/b607360c

    Article  CAS  Google Scholar 

  132. Sexton LT, Horne LP, Sherrill SA, Bishop GW, Baker LA, Martin CR (2007) Resistive-pulse studies of proteins and protein/antibody complexes using a conical nanotube sensor. J Am Chem Soc 129(43):13144–13152. doi:10.1021/ja0739943

    Article  CAS  Google Scholar 

  133. Ito Y, Park YS (2000) Signal-responsive gating of porous membranes by polymer brushes. Polym Adv Technol 11(3):136–144. doi:10.1002/1099-1581(200003)11:3<136:aid-pat961>3.0.co;2-f

    Article  CAS  Google Scholar 

  134. Geismann C, Tomicki F, Ulbricht M (2009) Block copolymer photo-grafted poly(ethylene terephthalate) capillary pore membranes distinctly switchable by two different stimuli. Sep Sci Technol 44(14):3312–3329. doi:10.1080/01496390903212755

    Article  CAS  Google Scholar 

  135. Friebe A, Ulbricht M (2009) Cylindrical pores responding to two different stimuli via surface-initiated atom transfer radical polymerization for synthesis of grafted diblock copolymers. Macromolecules 42(6):1838–1848. doi:10.1021/ma802185d

    Article  CAS  Google Scholar 

  136. Guo W, Xia H, Cao L, Xia F, Wang S, Zhang G, Song Y, Wang Y, Jiang L, Zhu D (2010) Integrating ionic gate and rectifier within one solid-state nanopore via modification with dual-responsive copolymer brushes. Adv Funct Mater 20(20):3561–3567. doi:10.1002/adfm.201000989

    Article  CAS  Google Scholar 

  137. Mara A, Siwy Z, Trautmann C, Wan J, Kamme F (2004) An asymmetric polymer nanopore for single molecule detection. Nano Lett 4(3):497–501. doi:10.1021/nl035141o

    Article  CAS  Google Scholar 

  138. Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang X, Jovanovich SB, Krstic PS, Lindsay S, Ling XS, Mastrangelo CH, Meller A, Oliver JS, Pershin YV, Ramsey JM, Riehn R, Soni GV, Tabard-Cossa V, Wanunu M, Wiggin M, Schloss JA (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26(10):1146–1153. doi:10.1038/nbt.1495

    Article  CAS  Google Scholar 

  139. Sowerby SJ, Petersen GB (2009) A proposition for single molecule DNA sequencing through a nanopore entropic trap. Int J Nanotechnol 6(3–4):398–407

    Article  CAS  Google Scholar 

  140. Iqbal SM, Akin D, Bashir R (2007) Solid-state nanopore channels with DNA selectivity. Nat Nanotechnol 2(4):243–248. doi:10.1038/nnano.2007.78

    Article  CAS  Google Scholar 

  141. Kohli P, Harrell CC, Cao ZH, Gasparac R, Tan WH, Martin CR (2004) DNA-functionalized nanotube membranes with single-base mismatch selectivity. Science 305(5686):984–986. doi:10.1126/science.1100024

    Article  CAS  Google Scholar 

  142. Stein D, Kruithof M, Dekker C (2004) Surface-charge-governed ion transport in nanofluidic channels. Phys Rev Lett 93(3):035901. http://link.aps.org/doi/10.1103/PhysRevLett.93.035901 doi:10.1103/PhysRevLett.93.035901

    Article  CAS  Google Scholar 

  143. van der Heyden FHJ, Bonthuis DJ, Stein D, Meyer C, Dekker C (2007) Power generation by pressure-driven transport of ions in nanofluidic channels. Nano Lett 7(4):1022–1025. doi:10.1021/nl070194h

    Article  CAS  Google Scholar 

  144. Xie Y, Wang X, Xue J, Jin K, Chen L, Wang Y (2008) Electric energy generation in single track-etched nanopores. Appl Phys Lett 93(16):163116. doi:10.1063/1.3001590

    Article  CAS  Google Scholar 

  145. Liu SR, Pu QS, Gao L, Korzeniewski C, Matzke C (2005) From nanochannel-induced proton conduction enhancement to a nanochannel-based fuel cell. Nano Lett 5(7):1389–1393. doi:10.1021/nl050712t

    Article  CAS  Google Scholar 

  146. Guo W, Cao L, Xia J, Nie F-Q, Ma W, Xue J, Song Y, Zhu D, Wang Y, Jiang L (2010) Energy harvesting with single-ion-selective nanopores: A concentration-gradient-driven nanofluidic power source. Adv Funct Mater 20(8):1339–1344. doi:10.1002/adfm.200902312

    Article  CAS  Google Scholar 

  147. Xu J, Lavan DA (2008) Designing artificial cells to harness the biological ion concentration gradient. Nat Nanotechnol 3(11):666–670. doi:10.1038/nnano.2008.274

    Article  CAS  Google Scholar 

  148. Wen L, Tian Y, Guo Y, Ma J, Liu W, Jiang L (2013) Conversion of light to electricity by photoinduced reversible pH changes and biomimetic nanofluidic channels. Adv Funct Mater. doi:10.1002/adfm.201203259

    Google Scholar 

  149. Savariar EN, Krishnamoorthy K, Thayumanavan S (2008) Molecular discrimination inside polymer nanotubules. Nat Nanotechnol 3(2):112–117. doi:10.1038/nnano.2008.6

    Article  CAS  Google Scholar 

  150. Vlassiouk I, Apel PY, Dmitriev SN, Healy K, Siwy ZS (2009) Versatile ultrathin nanoporous silicon nitride membranes. Proc Natl Acad Sci USA 106(50):21039–21044. doi:10.1073/pnas.0911450106

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Hou .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hou, X. (2013). Introduction. In: Bio-inspired Asymmetric Design and Building of Biomimetic Smart Single Nanochannels. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38050-1_1

Download citation

Publish with us

Policies and ethics