Skip to main content

Reconstructing Ancestral Genomic Orders Using Binary Encoding and Probabilistic Models

  • Conference paper
Book cover Bioinformatics Research and Applications (ISBRA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7875))

Included in the following conference series:

Abstract

Changes of gene ordering under rearrangements have been extensively used as a signal to reconstruct phylogenies and ancestral genomes. Inferring the gene order of an extinct species has the potential in revealing a more detailed evolutionary history of species descended from it. Current tools used in ancestral reconstruction may fall into parsimonious and probabilistic methods according to the criteria they follow. In this study, we propose a new probabilistic method called PMAG to infer the ancestral genomic orders by calculating the conditional probabilities of gene adjacencies using Bayes’ theorem. The method incorporates a transition model designed particularly for genomic rearrangement scenarios, a reroot procedure to relocate the root to the target ancestor that is inferred as well as a greedy algorithm to connect adjacencies with high conditional probabilities into valid gene orders.

We conducted a series of simulation experiments to assess the performance of PMAG and compared it against previously existing probabilistic methods (InferCARsPro) and parsimonious methods (GRAPPA). As we learned from the results, PMAG can reconstruct more correct ancestral adjacencies and yet run several orders of magnitude faster than InferCARsPro and GRAPPA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kent, W., Baertsch, R., Hinrichs, A., Miller, W., Haussler, D.: Evolutions cauldron: duplication, deletion, andrearrangement in the mouse and human genomes. Proceedings of the National Academy of Sciences 100(20), 11484–11489 (2003)

    Article  Google Scholar 

  2. Muller, K., Borsch, T., Legendre, L., Porembski, S., Theisen, I., Barthlott, W.: Evolution of carnivory in Lentibulariaceae and the Lamiales. Plant Biology 6(4), 477–490 (2008)

    Article  Google Scholar 

  3. Moret, B., et al.: A New Implmentation and Detailed Study of Breakpoint Analysis. In: Pacific Symposium on Biocomputing (2001)

    Google Scholar 

  4. Guillaume, B., Pevzner, P.: Genome-scale evolution: reconstructing gene orders in the ancestral species. Genome Research 12(1), 26–36 (2002)

    Google Scholar 

  5. Max, A., Pevzner, P.: Breakpoint graphs and ancestral genome reconstructions. Genome Research 19(5), 943–957 (2009)

    Article  Google Scholar 

  6. Ma, J.: A probabilistic framework for inferring ancestral genomic orders. In: 2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE (2010)

    Google Scholar 

  7. Sankoff, D., Blanchette, M.: Probability models for genome rearrangement and linear invariants for phylogenetic inference. In: Proceedings of the Third Annual International Conference on Computational Molecular Biology. ACM (1999)

    Google Scholar 

  8. Sophia, Y., Attie, O., Friedberg, R.: Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics 21(16), 3340–3346 (2005)

    Article  Google Scholar 

  9. Xu, A.W., Sankoff, D.: Decompositions of multiple breakpoint graphs and rapid exact solutions to the median problem. In: Crandall, K.A., Lagergren, J. (eds.) WABI 2008. LNCS (LNBI), vol. 5251, pp. 25–37. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Hu, F., et al.: Maximum likelihood phylogenetic reconstruction using gene order encodings. In: 2011 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). IEEE (2011)

    Google Scholar 

  11. Lin, Y., Hu, F., Tang, J., Moret, B.: Maximum likelihood phylogenetic reconstruction from high-resolution whole-genome data and a tree of 68 eukaryotes. In: Proc. 18th Pacific Symp. on Biocomputing, PSB 2013, pp. 285–296 (2013)

    Google Scholar 

  12. Yang, Z., Sudhir, K., Masatoshi, N.: A new method of inference of ancestral nucleotide and amino acid sequences. Genetics 141(4), 1641–1650 (1995)

    Google Scholar 

  13. Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of molecular evolution 17(6), 368–376 (1981)

    Article  Google Scholar 

  14. Stamatakis, A.: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22(21), 2688–2690 (2006)

    Article  Google Scholar 

  15. Stamatakis, A.: New standard RAxML version with marginal ancestral state computationas, https://github.com/stamatak/standard-RAxML

  16. Tang, J., Wang, L.: Improving genome rearrangement phylogeny using sequence-style parsimony. In: Fifth IEEE Symposium on Bioinformatics and Bioengineering, BIBE 2005, pp. 137–144. IEEE (2005)

    Google Scholar 

  17. Jahn, K., Zheng, C., Kováč, J., Sankoff, D.: A consolidation algorithm for genomes fractionated after higher order polyploidization. BMC Bioinformatics 13(suppl. 19), S8 (2012)

    Google Scholar 

  18. Ma, J., Zhang, L., Suh, B., Raney, B., Burhans, R., Kent, W., Blanchette, M., Haussler, D., Miller, W.: Reconstructing contiguous regions of an ancestral genome. Genome Research 16(12), 1557–1565 (2006)

    Article  Google Scholar 

  19. Lin, Y., Rajan, V., Moret, B.: Bootstrapping phylogenies inferred from rearrangement data. BMC Algorithms for Molecular Biology 7, 21 (2012)

    Article  Google Scholar 

  20. Lin, Y., Rajan, V., Moret, B.: Fast and accurate phylogenetic reconstruction from high-resolution whole-genome data and a novel robustness estimator. J. Computational Biology 18(9), 1131–1139 (2011) (special issue on RECOMB-CG 2010)

    Google Scholar 

  21. Zhang, Y., Hu, F., Tang, J.: A mixture framework for inferring ancestral gene orders. BMC Genomics 13(suppl. 1), S7 (2012)

    Google Scholar 

  22. Blanchette, M., Bourque, G., Sankoff, D.: Breakpoint phylogenies. Genome Informatics 8, 25–34 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hu, F., Zhou, L., Tang, J. (2013). Reconstructing Ancestral Genomic Orders Using Binary Encoding and Probabilistic Models. In: Cai, Z., Eulenstein, O., Janies, D., Schwartz, D. (eds) Bioinformatics Research and Applications. ISBRA 2013. Lecture Notes in Computer Science(), vol 7875. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38036-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38036-5_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38035-8

  • Online ISBN: 978-3-642-38036-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics