Skip to main content

The Radiation Hybrid Map Construction Problem Is FPT

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7875))

Included in the following conference series:

Abstract

The Radiation Hybrid Map Construction problem (RHMC) is of prime interest in the area of Bioinformatics, and is concerned with reconstructing a genome from a set of given gene clusters. The problem is \(\mbox{$\mathcal{NP}$}\)-complete, even for the special case when the cardinality of each cluster is 2. Recently, Zhang et al. considered the case when the cardinality of each cluster is at most three, and proved that RHMC in this case is fixed-parameter tractable. They asked whether RHMC is fixed-parameter tractable for any fixed upper bound on the cluster cardinality.

In this paper, we answer the question of Zhang et al. in the affirmative by showing that RHMC is fixed-parameter tractable when the cardinality of each cluster is at most d, for any nonnegative integer-constant d.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bodlaender, H.: A Linear-Time Algorithm for Finding Tree-Decompositions of Small Treewidth. SIAM Journal on Computing 25(6), 1305–1317 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bodlaender, H., Fellows, M., Hallett, M., Wareham, H.: Parameterized complexity analysis in computational biology. Computer Applications in the Biosciences 11, 49–57 (1995)

    Google Scholar 

  3. Bodlaender, H., Fellows, M., Hallett, M., Wareham, H.: The parameterized complexity of the longest common subsequence problem. Theoretical Computer Science 147, 31–54 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bodlaender, H.L., Thilikos, D.M.: Computing Small Search Numbers in Linear Time. In: Downey, R.G., Fellows, M.R., Dehne, F. (eds.) IWPEC 2004. LNCS, vol. 3162, pp. 37–48. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Cesati, M., Wareham, H.: Parameterized complexity analysis in robot motion planning. In: Proceedings of the 25th IEEE International Conference on Systems, Man and Cybernetics, pp. 880–885 (1995)

    Google Scholar 

  6. Chen, Z.-Z., Lin, G., Wang, L.: An approximation algorithm for the minimum co-path set problem. Algorithmica 60(4), 969–986 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cheng, Y., Cai, Z., Goebel, R., Lin, G., Zhu, B.: The radiation hybrid map construction problem: recognition, hardness, and approximation algorithms (2008) (unpublished manuscript)

    Google Scholar 

  8. Cox, D., Burmeister, M., Price, E., Kim, S., Myers, R.: Radiation hybrid mapping: a somatic cell genetic method for constructing high resolution maps of mammalian chromosomes. Science 250, 245–250 (1990)

    Article  Google Scholar 

  9. De Givry, S., Bouchez, M., Chabrier, P., Milan, D., Schiex, T.: Carh ta Gene: multipopulation integrated genetic and radiation hybrid mapping. Bioinformatics 21(8), 1703 (2005)

    Article  Google Scholar 

  10. Downey, R., Evans, P., Fellows, M.: Parameterized learning complexity. In: Proceedings of the 6th ACM Workshop on Computational Learning Theory, pp. 51–57 (1993)

    Google Scholar 

  11. Downey, R., Fellows, M.: Parameterized complexity. Springer, New York (1999)

    Book  Google Scholar 

  12. Downey, R., Fellows, M., Stege, U.: Parameterized complexity: a framework for systematically confronting computational intractability. In: Roberts, F., Kratochvil, J., Nešetřil, J. (eds.) Contemporary Trends in Discrete Mathematics, AMS-DIMACS Proceedings, pp. 49–99. American Mathematical Society (1999)

    Google Scholar 

  13. Faraut, T., De Givry, S., Chabrier, P., Derrien, T., Galibert, F., Hitte, C., Schiex, T.: A comparative genome approach to marker ordering. Bioinformatics 23(2), e50 (2007)

    Google Scholar 

  14. Fellows, M., Hallett, M., Wareham, H.: DNA physical mapping: three ways of difficult. In: Lengauer, T. (ed.) ESA 1993. LNCS, vol. 726, pp. 157–168. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  15. Fellows, M., Hallett, M., Wareham, H.: Fixed-parameter complexity and cryptography. In: Moreno, O., Cohen, G., Mora, T. (eds.) AAECC 1993. LNCS, vol. 673, pp. 121–131. Springer, Heidelberg (1993)

    Chapter  Google Scholar 

  16. Fellows, M., Langston, M.: On search, decision and the efficiency of polynomial-time algorithms. In: Proceedings of the 21st ACM Symposium on Theory of Computing (STOC), pp. 501–512 (1989)

    Google Scholar 

  17. Fishburn, P.: Interval orders and interval graphs: A study of partially ordered sets. Wiley-Interscience Series in Discrete Mathematics, New York (1985)

    Google Scholar 

  18. Flum, J., Grohe, M.: Parameterized complexity theory. Springer-Verlag New York Inc. (2006)

    Google Scholar 

  19. Jiang, H., Zhu, B.: Weak Kernels. Electronic Colloquium on Computational Complexity (ECCC) 17, 5 (2010)

    Google Scholar 

  20. Kaplan, H., Shamir, R., Tarjan, R.: Tractability of parameterized completion problems on chordal, strongly chordal, and proper interval graphs. SIAM Journal on Computing 28, 880–892 (1999)

    Article  MathSciNet  Google Scholar 

  21. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford University Press, USA (2006)

    Book  MATH  Google Scholar 

  22. Rafiey, A.: Single Exponential FPT Algorithm for Interval Vertex Deletion and Interval Completion Problem, http://arxiv.org/pdf/1211.4629v1.pdf

  23. Richard, C., Withers, D., Meeker, T., Maurer, S., Evans, G., Myers, R., Cox, D.: A radiation hybrid map of the proximal long arm of human chromosome 11 containing the multiple endocrine neoplasia type 1 (MEN-1) and bcl-1 disease loci. American Journal of Human Genetics 49(6), 1189 (1991)

    Google Scholar 

  24. Slonim, D., Kruglyak, L., Stein, L., Lander, E.: Building human genome maps with radiation hybrids. Journal of Computational Biology 4(4), 487–504 (1997)

    Article  Google Scholar 

  25. Zhang, C., Jiang, H., Zhu, B.: Radiation hybrid map construction problem parameterized. In: Lin, G. (ed.) COCOA 2012. LNCS, vol. 7402, pp. 127–137. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  26. West, D.: Introduction to graph theory. Prentice Hall Inc., Upper Saddle River (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kanj, I., Xia, G., Zhu, B. (2013). The Radiation Hybrid Map Construction Problem Is FPT. In: Cai, Z., Eulenstein, O., Janies, D., Schwartz, D. (eds) Bioinformatics Research and Applications. ISBRA 2013. Lecture Notes in Computer Science(), vol 7875. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38036-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38036-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38035-8

  • Online ISBN: 978-3-642-38036-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics