Skip to main content

Construction of Uncertain Protein-Protein Interaction Networks and Its Applications

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7875))

Included in the following conference series:

  • 4064 Accesses

Abstract

Recent developments in experiments have resulted in the publication of many high-quality, large-scale protein-protein interaction (PPI) data. Unfortunately, a significant proportion of PPI networks have been found to contain false positives, which have negative effects on the further research of PPI networks. We construct an uncertain protein-protein interaction (UPPI) network, in which each protein-protein interaction is assigned with an existence probability using the topology of the PPI network solely. Based on the uncertainty theory, we propose the concept of expected density to assess the density degree of a subgraph, the concept of the relative degree to describe the relationship between a protein and a subgraph in a UPPI network. To verify the effectiveness of the UPPI network, we propose a novel complex prediction method named CPUT (Complex Prediction based on Uncertainty Theory). In CPUT, the expected density combined with the absolute degree is used to determine whether a mined subgraph from the UPPI network can be represented as a core component with high cohesion and low coupling while the relative degree is the criterion of binding an attachment protein to a core component to form a complex. We employ CPUT and the existing competitive algorithms on two yeast PPI networks. Experimental results indicate that CPUT performs significantly better than the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ito, T., et al.: A comprehensive two-hybrid analysis to explore the yeast protein interactome. PNAS 98, 4569–4574 (2001)

    Article  Google Scholar 

  2. Rigaut, G., et al.: A generic protein purification method for protein complex characterization and proteome exploration. Nature Biotechnology 17, 1030–1032 (1999)

    Article  Google Scholar 

  3. Ho, Y., et al.: Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 405, 180–183 (2002)

    Article  Google Scholar 

  4. Mrowka, R., Patzak, A., Herzel, H.: Is There a Bias in Proteome Research? Genome Research 11, 1971–1973 (2001)

    Article  Google Scholar 

  5. Mering, C.V., et al.: Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417, 399–403 (2002)

    Article  Google Scholar 

  6. Tsoka, S., Ouzounis, C.A.: Prediction of protein interactions: metabolic enzymes are frequently involved in gene fusion. Nature Genetics 26, 141–142 (2000)

    Article  Google Scholar 

  7. Wojcik, J., Schächter, V.: Protein–protein interaction map inference using interacting domain profile pairs. Bioinformatics 17, 296–305 (2001)

    Article  Google Scholar 

  8. Yamada, T., Kanehisa, M., Goto, S.: Extraction of phylogenetic network modules from the metabolic network. BMC Bioinformatics 7, 130 (2006)

    Article  Google Scholar 

  9. Wu, J., Kasif, S., DeLisi, C.: Identification of functional links between genes using phylogenetic profiles. Bioinformatics 19, 1524–1530 (2003)

    Article  Google Scholar 

  10. Albert, I., Albert, R.: Identification of functional links between genes using phylogenetic profiles. Bioinformatics 20, 3346–3352 (2004)

    Article  Google Scholar 

  11. Bock, J.R., Gough, D.A.: Identification of functional links between genes using phylogenetic profiles. Bioinformatics 19, 125–135 (2003)

    Article  Google Scholar 

  12. Lo, S.L., et al.: Effect of training datasets on support vector machine prediction of protein-protein interactions. Proteomics 5, 876–884 (2005)

    Article  Google Scholar 

  13. Deane, C.M., et al.: Protein interactions: two methods for assessment of the reliability of high throughput observations. Molecular & Cellular Proteomics 1, 349–356 (2002)

    Article  Google Scholar 

  14. D’haeseleer, P., Church, G.M.: Estimating and improving protein interaction error rates. In: Proc. IEEE Computational Systems Bioinformatics Conference, USA, pp. 216–223 (2004)

    Google Scholar 

  15. Gilchrist, M.A., et al.: A statistical framework for combining and interpreting proteomic datasets. Bioinformatics 20, 689–700 (2004)

    Article  Google Scholar 

  16. Mering, V.C., et al.: Comparative assessment of large-scale data sets of proteinprotein interactions. Nature 417, 399–403 (2002)

    Article  Google Scholar 

  17. Hwang, W., et al.: A novel functional module detection algorithm for protein-protein interaction networks. Algorithms for Molecular Biology 1, 24 (2006)

    Article  Google Scholar 

  18. Ulitsky, I., Shamir, R.: Identifying functional modules using expression profiles and confidence-scored protein interactions. Bioinformatics 25, 1158–1164 (2009)

    Article  Google Scholar 

  19. Gabow, A.P., et al.: Improving protein function prediction methods with integrated literature data. BMC Bioinformatics 9, 198 (2008)

    Article  Google Scholar 

  20. Hu, L., et al.: Predicting Functions of Proteins in Mouse Based on Weighted Protein-Protein Interaction Network and Protein Hybrid Properties. PLoS ONE 6, e14556 (2011)

    Google Scholar 

  21. Peng, W., et al.: Iteration method for predicting essential proteins based on orthology and protein-protein interaction networks. BMC Systems Biology 6, 87 (2012)

    Article  Google Scholar 

  22. Bader, G.D., Hogue, C.W.: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4, 2 (2003)

    Article  Google Scholar 

  23. Enright, A.J., Dongen, S.V., Ouzounis, C.A.: An efficient algorithm for large-scale detection of protein families. Nucleic Acids Research 30, 1575–1584 (2002)

    Article  Google Scholar 

  24. Palla, G., et al.: Uncovering the Overlapping Community Structure of Complex Networks in Nature and Society. Nature 435, 814–818 (2005)

    Article  Google Scholar 

  25. Adamcsek, B., et al.: CFinder: locating cliques and overlapping modules in biological networks. Bioinformatics 22, 1021–1023 (2006)

    Article  Google Scholar 

  26. Liu, G., Wong, L., Chua, H.N.: Complex discovery from weighted PPI networks. Bioinformatics 25, 1891–1897 (2009)

    Article  Google Scholar 

  27. Chua, H.N., Sung, W.K., Wong, L.: Exploiting indirect neighbours and topological weight to predict protein function from protein–protein interactions. Bioinformatics 22, 1623–1630 (2006)

    Article  Google Scholar 

  28. Jiang, P., Singh, M.: SPICi: a fast clustering algorithm for large biological networks. Bioinformatics 26, 1105–1111 (2010)

    Article  Google Scholar 

  29. Wang, J.X., et al.: A Fast Hierarchical Clustering Algorithm for Functional Modules Discovery in Protein Interaction Networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics 8, 607–620 (2011)

    Article  Google Scholar 

  30. Wu, M., et al.: A core-attachment based method to detect protein complexes in ppi networks. BMC Bioinformatics 10, 169 (2009)

    Article  Google Scholar 

  31. Nepusz, T., Yu, H., Paccanaro, A.: Detecting overlapping protein complexes in protein-protein interaction networks. Nature Methods 9, 471–475 (2012)

    Article  Google Scholar 

  32. Dezso, Z., Oltvai, Z.N., Barabási, A.L.: Analysis of Experimentally Determined Protein Complexes in the Yeast Saccharomyces cerevisiae. Genome Research 13, 2450–2454 (2003)

    Article  Google Scholar 

  33. Gavin, A.C., et al.: Proteome survey reveals modularity of the yeast cell machinery. Genome Research 440, 631–636 (2006)

    Google Scholar 

  34. Li, X.L., Foo, C.S., Ng, S.K.: Discovering protein complexes in dense reliable neighborhoods of protein interaction networks. In: Proc. CSB, pp. 157–168 (2007)

    Google Scholar 

  35. Xenarios, X., et al.: DIP: the database of interacting proteins. Nucleic Acids Research 28, 289–291 (2000)

    Article  Google Scholar 

  36. Krogan, N.J., et al.: Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440, 637–643 (2006)

    Article  Google Scholar 

  37. Pu, S., et al.: Up-to-date catalogues of yeast protein complexes. Nucleic Acids Research 37, 825–831 (2009)

    Article  MathSciNet  Google Scholar 

  38. Boyle, E.I., et al.: GO:TermFinder-open source software for accessing GeneOntology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 20, 3710–3715 (2004)

    Article  Google Scholar 

  39. Hu, H., et al.: Mining coherent dense subgraphs across massive biological networks for functional discovery. Bioinformatics 25, 213–221 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhao, B., Wang, J., Wu, FX., Pan, Y. (2013). Construction of Uncertain Protein-Protein Interaction Networks and Its Applications. In: Cai, Z., Eulenstein, O., Janies, D., Schwartz, D. (eds) Bioinformatics Research and Applications. ISBRA 2013. Lecture Notes in Computer Science(), vol 7875. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38036-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38036-5_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38035-8

  • Online ISBN: 978-3-642-38036-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics