Skip to main content

A Graph Approach to Bridge the Gaps in Volumetric Electron Cryo-microscopy Skeletons

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2013)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7875))

Included in the following conference series:

Abstract

Electron Cryo-microscopy is an advanced imaging technique that is able to produce volumetric images of proteins that are large or hard to crystallize. De novo modeling is a process that aims at deriving the structure of the protein using the images produced by Electron Cryo-microscopy. At the medium resolutions (5 to 10Å), the location and orientation of the secondary structure elements can be computationally identified on the images. However, there is no registration between the detected secondary structure elements and the protein sequence, and therefore it is challenging to derive the atomic structure from such volume data. The skeleton of the volume image is used to interpret the connections between the secondary structure elements in order to reduce the search space of the registration problem. Unfortunately, not all features of the image can be captured using a single segmentation. Moreover, the skeleton is sensitive to the threshold used which leads to gaps in the skeleton. In this paper, we present a threshold-independent approach to overcome the problem of gaps in the skeletons. The approach uses a novel representation of the image where the image is modeled as a graph and a set of volume trees. A test containing thirteen synthesized images and two authentic images showed that our approach could improve the existent skeletons. The percent of improvement achieved were 117% and 40% for Gorgon and MapEM, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chiu, W., Schmid, M.F.: Pushing back the limits of electron cryomicroscopy. Nature Structural Biology 4, 331–333 (1997)

    Article  Google Scholar 

  2. Zhou, Z.H., Dougherty, M., Jakana, J., He, J., Rixon, F.J., Chiu, W.: Seeing the herpesvirus capsid at 8.5 A. Science 288(5467), 877–880 (2000)

    Article  Google Scholar 

  3. Ludtke, S.J., Song, J.L., Chuang, D.T., Chiu, W.: Seeing GroEL at 6 A resolution by single particle electron cryomicroscopy. Structure 12(7), 1129–1136 (2004)

    Article  Google Scholar 

  4. Chiu, W., Baker, M.L., Jiang, W., Zhou, Z.H.: Deriving folds of macromolecular complexes through electron cryomicroscopy and bioinformatics approaches. Current Opinion in Structural Biology 12(2), 263–269 (2002)

    Article  Google Scholar 

  5. Conway, J.F., Cheng, N., Zlotnick, A., Wingfield, P.T., Stahl, S.J., Steven, A.C.: Visualization of a 4-helix bundle in the hepatitis B virus capsid by cryo-electron microscopy. Nature 386(6620), 91–94 (1997)

    Article  Google Scholar 

  6. Zhang, X., Jin, L., Fang, Q., Hui, W.H., Zhou, Z.H.: 3.3 Å Cryo-EM Structure of a Nonenveloped Virus Reveals a Priming Mechanism for Cell Entry. Cell 141(3), 472–482 (2010)

    Article  Google Scholar 

  7. Baker, M.L., Jiang, W., Wedemeyer, W.J., Rixon, F.J., Baker, D., Chiu, W.: Ab initio modeling of the herpesvirus VP26 core domain assessed by CryoEM density. PLoS Computational Biology 2(10), e146 (2006)

    Google Scholar 

  8. Martin, A.G., Depoix, F., Stohr, M., Meissner, U., Hagner-Holler, S., Hammouti, K., Burmester, T., Heyd, J., Wriggers, W., Markl, J.: Limulus polyphemus hemocyanin: 10 A cryo-EM structure, sequence analysis, molecular modelling and rigid-body fitting reveal the interfaces between the eight hexamers. Journal of Molecular Biology 366(4), 1332–1350 (2007)

    Article  Google Scholar 

  9. Villa, E., Sengupta, J., Trabuco, L.G., LeBarron, J., Baxter, W.T., Shaikh, T.R., Grassucci, R.A., Nissen, P., Ehrenberg, M., Schulten, K., Frank, J.: Ribosome-induced changes in elongation factor Tu conformation control GTP hydrolysis. Proceedings of the National Academy of Sciences of the United States of America (PNAS) 106(4), 1063–1068 (2009)

    Article  Google Scholar 

  10. Lasker, K., Dror, O., Shatsky, M., Nussinov, R., Wolfson, H.J.: EMatch: discovery of high resolution structural homologues of protein domains in intermediate resolution cryo-EM maps. IEEE/ACM Transactions on Computational Biology and Bioinformatics 4(1), 28–39 (2007)

    Article  Google Scholar 

  11. Jiang, W., Baker, M.L., Ludtke, S.J., Chiu, W.: Bridging the information gap: computational tools for intermediate resolution structure interpretation. Journal of Molecular Biology 308(5), 1033–1044 (2001)

    Article  Google Scholar 

  12. Del Palu, A., He, J., Pontelli, E., Lu, Y.: Identification of Alpha-Helices from Low Resolution Protein Density Maps. In: Proceeding of Computational Systems Bioinformatics Conference (CSB), pp. 89–98 (2006)

    Google Scholar 

  13. Baker, M.L., Ju, T., Chiu, W.: Identification of secondary structure elements in intermediate-resolution density maps. Structure 15(1), 7–19 (2007)

    Article  Google Scholar 

  14. Si, D., Ji, S., Al Nasr, K., He, J.: A machine learning approach for the identification of protein secondary structure elements from cryoEM density maps. Biopolymers 97, 698–708 (2012)

    Article  Google Scholar 

  15. Jones, D.T.: Protein secondary structure prediction based on position-specific scoring matrices. Journal of Molecular Biology 292(2), 195–202 (1999)

    Article  Google Scholar 

  16. Pollastri, G., McLysaght, A.: Porter: a new, accurate server for protein secondary structure prediction. Bioinformatics 21(8), 1719–1720 (2005)

    Article  Google Scholar 

  17. Al Nasr, K., Ranjan, D., Zubair, M., He, J.: Ranking Valid Topologies of the Secondary Structure elements Using a constraint Graph. Journal of Bioinformatics and Computational Biology 9(3), 415–430 (2011)

    Article  Google Scholar 

  18. Al Nasr, K., Sun, W., He, J.: Structure prediction for the helical skeletons detected from the low resolution protein density map. BMC Bioinformatics 11(suppl. 1), S44 (2010)

    Google Scholar 

  19. Lindert, S., Staritzbichler, R., Wötzel, N., Karakaş, M., Stewart, P.L., Meiler, J.: EM-Fold: De Novo Folding of α-Helical Proteins Guided by Intermediate-Resolution Electron Microscopy Density Maps. Structure 17(7), 990–1003 (2009)

    Article  Google Scholar 

  20. Lindert, S., Alexander, N., Wötzel, N., Karaka, M., Stewart, P.L., Meiler, J.: EM-Fold: De Novo Atomic-Detail Protein Structure Determination from Medium-Resolution Density Maps. Structure 20(3), 464–478 (2012)

    Article  Google Scholar 

  21. Al Nasr, K., Chen, L., Si, D., Ranjan, D., Zubair, M., He, J.: Building the initial chain of the proteins through de novo modeling of the cryo-electron microscopy volume data at the medium resolutions. In: Proceedings of the ACM Conference on Bioinformatics, Computational Biology and Biomedicine, Orlando, Florida, pp. 490–497 (2012)

    Google Scholar 

  22. Khromov, D., Mestetskiy, L.: 3D Skeletonization as an Optimization Problem. In: The Canadian Conference on Computational Geometry, Charlottetown, pp. 259–264 (2012)

    Google Scholar 

  23. Dey, T.K., Zhao, W.: Approximate medial axis as a voronoi subcomplex. In: Proceedings of the Seventh ACM Symposium on Solid Modeling and Applications, Saarbrücken, Germany, pp. 356–366 (2002)

    Google Scholar 

  24. Foskey, M., Lin, M.C., Manocha, D.: Efficient Computation of A Simplified Medial Axis. Journal of Computing and Information Science in Engineering 3(4), 274–284 (2003)

    Article  Google Scholar 

  25. Tam, R., Heidrich, W.: Shape simplification based on the medial axis transform, pp. 481–488

    Google Scholar 

  26. Tran, S., Shih, L.: Efficient 3D binary image skeletonization, pp. 364–372

    Google Scholar 

  27. She, F.H., Chen, R.H., Gao, W.M., Hodgson, P.H., Kong, L.X., Hong, H.Y.: Improved 3D Thinning Algorithms for Skeleton Extraction, pp. 14–18

    Google Scholar 

  28. van Dortmont, M.A.M.M., van de Wetering, H.M.M., Telea, A.C.: Skeletonization and distance transforms of 3D volumes using graphics hardware. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 617–629. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  29. Ju, T., Baker, M.L., Chiu, W.: Computing a family of skeletons of volumetric models for shape description. Computer-Aided Design 39(5), 352–360 (2007)

    Article  Google Scholar 

  30. Abeysinghe, S.S., Baker, M., Wah, C., Tao, J.: Segmentation-free skeletonization of grayscale volumes for shape understanding, pp. 63–71

    Google Scholar 

  31. Abeysinghe, S.S., Ju, T.: Interactive skeletonization of intensity volumes. Vis. Comput. 25(5-7), 627–635 (2009)

    Article  Google Scholar 

  32. Kong, Y., Zhang, X., Baker, T.S., Ma, J.: A Structural-informatics approach for tracing beta-sheets: building pseudo-C(alpha) traces for beta-strands in intermediate-resolution density maps. Journal of Molecular Biology 339(1), 117–130 (2004)

    Article  Google Scholar 

  33. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E.: UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry 25(13), 1605–1612 (2004)

    Article  Google Scholar 

  34. Baker, M.L., Abeysinghe, S.S., Schuh, S., Coleman, R.A., Abrams, A., Marsh, M.P., Hryc, C.F., Ruths, T., Chiu, W., Ju, T.: Modeling protein structure at near atomic resolutions with Gorgon. Journal of Structural Biology 174(2), 360–373 (2011)

    Article  Google Scholar 

  35. Al Nasr, K.: De novo protein structure modeling from cryoem data through a dynamic programming algorithm in the secondary structure topology graph. Dissertation, Department of Computer Science, Old Dominion University (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nasr, K.A., Liu, C., Rwebangira, M.R., Burge, L.L.I. (2013). A Graph Approach to Bridge the Gaps in Volumetric Electron Cryo-microscopy Skeletons. In: Cai, Z., Eulenstein, O., Janies, D., Schwartz, D. (eds) Bioinformatics Research and Applications. ISBRA 2013. Lecture Notes in Computer Science(), vol 7875. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38036-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38036-5_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38035-8

  • Online ISBN: 978-3-642-38036-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics