Skip to main content

Inferring Time-Delayed Gene Regulatory Networks Using Cross-Correlation and Sparse Regression

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 7875))

Abstract

Inferring a time-delayed gene regulatory network from microarray gene-expression is challenging due to the small numbers of time samples and requirements to estimate a large number of parameters. In this paper, we present a two-step approach to tackle this challenge: first, an unbiased cross-correlation is used to determine the probable list of time-delays and then, a penalized regression technique such as the LASSO is used to infer the time-delayed network. This approach is tested on several synthetic and one real dataset. The results indicate the efficacy of the approach with promising future directions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pisarev, A., Poustelnikova, E., Samsonova, M., Reinitz, J.: Flyex, the quantitative atlas on segmentation gene expression at cellular resolution. Nucleic Acid Research 37, D560–D566 (2009)

    Google Scholar 

  2. Huang, Y., Tienda-Luna, I., Wang, Y.: Reverse engineering gene regulatory networks. IEEE Signal Processing Magazine 26(1), 76–91 (2009)

    Article  Google Scholar 

  3. Kim, S., Imoto, S., Miyano, S.: Inferring gene networks from time series microarray data using dynamic bayesian networks. Briefings in Bioinformatics 4(3), 228–235 (2003)

    Article  Google Scholar 

  4. Fujita, A., Sato, J., Garay-Malpartida, H., Yamaguchi, R., Miyano, S., Sogayar, M., Ferreira, C.: Modeling gene expression regulatory networks with the sparse vector autoregressive model. BMC Systems Biology 1, 39 (2007)

    Google Scholar 

  5. Chima, C., Hua, J., Jung, S.: Inference of gene regulatory networks using time-series data: A survey. Current Genomics 10, 416–429 (2009)

    Article  Google Scholar 

  6. de Jong, H.: Modeling and simulation of genetic regulatory systems: A literature review. Journal of Computational Biology 9(1), 67–103 (2002)

    Article  Google Scholar 

  7. Fogelberg, C., Palade, V.: Machine learning and genetic regulatory networks: A review and a roadmap. In: Hassanien, A.-E., Abraham, A., Vasilakos, A.V., Pedrycz, W. (eds.) Foundations of Computational, Intelligence 1. SCI, vol. 201, pp. 3–34. Springer, Heidelberg (2009)

    Google Scholar 

  8. Li, X., Rao, S., Jiang, W., Li, C., Xiao, Y., Guo, Z., Zhang, Q., Wang, L., Du, L., Li, J., Li, L., Zhang, T., Wang, Q.: Discovery of time-delayed gene regulatory networks based on temporal gene expression profiling. BMC Bioinformatics 7, 26 (2006)

    Google Scholar 

  9. Chaitankar, V., Ghosh, P., Perkins, E., Gong, P., Zhang, C.: Time lagged information theoretic approaches to the reverse engineering of gene regulatory networks. BMC Bioinformatics 11(suppl. 6), S19 (2010)

    Google Scholar 

  10. Chaturvedi, I., Rajapakse, J.C.: Detecting robust time-delayed regulation in mycobacterium tuberculosis. BMC Genomics 10(suppl. 3), S28 (2009)

    Google Scholar 

  11. Zoppoli, P., Morganella, S., Ceccarelli, M.: TimeDelayed-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach. BMC Bioinformatics 11, 154 (2010)

    Article  Google Scholar 

  12. Chaturvedi, I., Rajapakse, J.C.: Building gene networks with time-delayed regulations. Pattern Recognition Letters 31(14), 2133–2137 (2010)

    Article  Google Scholar 

  13. Morshed, N., Chetty, M., Vinh, N.: Simultaneous learning of instantaneous and time-delayed genetic interactions using novel information theoretic scoring technique. BMC Systems Biology 6, 62 (2012)

    Google Scholar 

  14. Chueh, T.H., Lu, H.: Inference of biological pathway from gene expression profiles by time delay boolean networks. PLOS ONE 7(8), e42095 (2012)

    Google Scholar 

  15. Shimamura, T., Imoto, S., Yamaguchi, R., Fujita, A., Nagasaki, M., Miyano, S.: Recursive regularization for inferring gene networks from time-course gene expression profiles. BMC Systems Biology 3, 41 (2009)

    Google Scholar 

  16. Rajapakse, J.C., Mundra, P.A.: Stability of building gene regulatory networks with sparse autoregressive models. BMC Bioinformatics 12(suppl. 13), S17 (2011)

    Google Scholar 

  17. Orfanidis, S.: Optimum Signal Processing. An Introduction. Prentice-Hall (1996)

    Google Scholar 

  18. Marbach, D., Schaffter, T., Mattiussi, C., Floreano, D.: Generating realistic in silico gene networks for performance assessment of reverse engineering methods. Journal of Computational Biology 16(2), 229–239 (2009)

    Article  Google Scholar 

  19. Friedman, J., Hastie, T., Tibshirani, R.: glmnet: Lasso and elastic-net regularized generalized linear models

    Google Scholar 

  20. Spellman, P., Sherlock, G., Zhang, M., Iyer, V., Anders, K., Eisen, M., Brown, P., Botstein, D., Futcher, B.: Comprehensive identification of cell cycle regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell 9(12), 3273–3297 (1998)

    Google Scholar 

  21. Nasmyth, K.: Control of the yeast cell cycle by the cdc28 protein kinase. Current Opinion in Cell Biology 5(2), 166–179 (1993)

    Article  Google Scholar 

  22. Siegmund, R., Nasmyth, K.: The saccharomyces cerevisiae start-specific transcription factor Swi4 interacts through the ankyrin repeats with the mitotic Clb2/Cdc28 kinase and through its conserved carboxy terminus with Swi6. Molecular Biology of the Cell 16(6), 2647–2655 (1996)

    Google Scholar 

  23. Mundra, P.A., Welsch, R.E., Rajapakse, J.C.: Bootstrapping of short time-series multivariate gene-expression data. In: Colubi, A., Fokianos, K., Gonzalez-Rodriguez, G., Kontaghiorghes, E. (eds.) Proceedings of 20th International Conference on Computational Statistics(COMPSTAT 2012), pp. 605–616 (2012)

    Google Scholar 

  24. Chen, H., Maduranga, D., Mundra, P., Zheng, J.: Integrating epigenetic prior in dynamic bayesian network for gene regulatory network inference. In: IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (accepted, 2013)

    Google Scholar 

  25. Hecker, M., Lambeck, S., Toepfer, S., van Someren, E., Guthke, R.: Gene regulatory network inference: Data integration in dynamic models: A review. Biosystems 96, 86–103 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mundra, P.A., Zheng, J., Niranjan, M., Welsch, R.E., Rajapakse, J.C. (2013). Inferring Time-Delayed Gene Regulatory Networks Using Cross-Correlation and Sparse Regression. In: Cai, Z., Eulenstein, O., Janies, D., Schwartz, D. (eds) Bioinformatics Research and Applications. ISBRA 2013. Lecture Notes in Computer Science(), vol 7875. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38036-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38036-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38035-8

  • Online ISBN: 978-3-642-38036-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics