Operational Amplifier RC Low-Pass Filter

  • Heimo Uhrmann
  • Robert Kolm
  • Horst Zimmermann
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 45)


Several applications pose challenges for wireless receivers due to close blockers in the frequency spectrum. This requires amplifiers and filters with a high linearity. Due to the challenges of the nanometer hell of physics concerning design of operational amplifiers, new circuit architectures will be investigated. In fact, it will turn out that the low supply voltage of nanometer CMOS circuits is the most limiting factor to achieve a good linearity and a large dynamic range. A high-voltage operational amplifier finally will show the best performance in a filter-mixer combination. In addition, 1/f noise will turn out to reduce the choice of usable mixer topologies considerably.


Supply Voltage Operational Amplifier Universal Mobile Telecommunication System Differential Pair Versus Supply Voltage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A.A. Abidi, Direct-conversion radio transceivers for digital communications. IEEE J. Solid-State Circuits 30(12), 1399–1410 (1995) CrossRefGoogle Scholar
  2. 2.
    H.F. Achigui, C.J.B. Fayomi, M. Sawan, 1-V DTMOS-based class-AB operational amplifier: implementation and experimental results. IEEE J. Solid-State Circuits 41(11), 2440–2448 (2006) CrossRefGoogle Scholar
  3. 8.
    R. Bestak, Evolution of mobile networks, in International Conference on Systems, Signals and Image Processing (2008), pp. 29–32 Google Scholar
  4. 10.
    J.M. Carrillo, G. Torelli, R. Perez-Aloe, J.F. Duque-Carrillo, 1-V rail-to-rail CMOS OpAmp with improved bulk-driven input stage. IEEE J. Solid-State Circuits 42(3), 508–517 (2007) CrossRefGoogle Scholar
  5. 15.
    C.-L. Chen, Y.-C. Chang, Self-biased cross-coupled low-cost fully-differential CMOS operational amplifier. Electron. Lett. 41(9), 512–514 (2005) MathSciNetCrossRefGoogle Scholar
  6. 19.
    S. D’Amico, V. Giannini, A. Baschirotto, A 4th-order active-Gm-RC reconfigurable (UMTS/WLAN) filter. IEEE J. Solid-State Circuits 41(7), 1630–1637 (2006) CrossRefGoogle Scholar
  7. 20.
    S. D’Amico, M. Conta, A. Baschirotto, A 4.1 mW 10 MHz fourth-order source-follower-based continuous-time filter with 79 dB DR. IEEE J. Solid-State Circuits 41(12), 2713–2719 (2006) CrossRefGoogle Scholar
  8. 21.
    M. De Matteis, S. D’Amico, V. Giannini, A. Baschirotto, A 550 mV 8 dBm IIP3 4th order analog base band filter for WLAN receivers, in Proc. European Solid-State Circuits Conference (2007), pp. 504–507 Google Scholar
  9. 22.
    M. De Matteis, S. D’Amico, P. Andriulo, G. Cocciolo, A. Baschirotto, A 4th-order CMOS 65 nm wideband low-power analog filter for wireless receivers, in IEEE International Conference on Electronics, Circuits, and Systems (2009), pp. 191–194 Google Scholar
  10. 23.
    S.C. dela Cruz, M.-G.T. delos Reyes, T.C. Gaffud, T.V. Abaya, M.T.A. Gusad, M.D. Rosales, Design and implementation of operational amplifiers with programmable characteristics in a 90 nm CMOS process, in European Conference on Circuit Theory and Design (2009), pp. 209–212 CrossRefGoogle Scholar
  11. 27.
    J.-A. Diaz-Madrid, H. Neubauer, G. Domenech-Asensi, R. Ruiz, Comparative analysis of two operational amplifier topologies for a 40 MS/s 12-bit pipelined ADC in 0.35 μm CMOS, in IEEE International Conference on Integrated Circuit Design and Technology and Tutorial (2008), pp. 121–124 CrossRefGoogle Scholar
  12. 30.
    M. Elmala, B. Carlton, R. Bishop, K. Soumyanath, A highly linear filter and VGA chain with novel DC-offset correction in 90 nm digital CMOS process, in Symposium on VLSI Circuits Digest of Technical Papers (2005), pp. 302–303 Google Scholar
  13. 32.
    M.M. Farhad, S. Mirzakuchaki, A second-order Gm-C continuous time tilter in mobile radio receiver architecture. Int. Conf. Educ. Technol. Comput. 5, V5-170–V5-173 (2010) Google Scholar
  14. 34.
    D. Gangopadhyay, T.K. Bhattacharyya, A 2.3 GHz gm-boosted high swing class-ab ultra-wide bandwidth operational amplifier in 0.18 μm CMOS, in IEEE International Midwest Symposium on Circuits and Systems (2010), pp. 713–716 Google Scholar
  15. 35.
    N. Ghittori, A. Vigna, P. Malcovati, S. D’Amico, A. Baschirotto, 1.2 V low-power multi-mode DAC+filter blocks for reconfigurable (WLAN/UMTS, WLAN/bluetooth) transmitters. IEEE J. Solid-State Circuits 41(9), 1970–1982 (2006) CrossRefGoogle Scholar
  16. 39.
    P.R. Gray, P.J. Hurst, S.H. Lewis, R.G. Meyer, Analysis and Design of Analog Integrated Circuits (Wiley, New York, 2001) Google Scholar
  17. 42.
    J. Harrison, N. Weste, 350 MHz opamp-RC filter in 0.18 μm CMOS. Electron. Lett. 38(6), 259–260 (2002) CrossRefGoogle Scholar
  18. 44.
    B. Hernes, T. Sæther, Design Criteria for Low Distortion in Feedback Opamp Circuits (Kluwer Academic, Dordrecht, 2003) Google Scholar
  19. 45.
    B. Hernes, W. Sansen, Distortion in single-, two- and three-stage amplifiers. IEEE Trans. Circuits Syst. I, Regul. Pap. 52(5), 846–856 (2005) CrossRefGoogle Scholar
  20. 46.
    F.N. Hooge, 1/f noise sources. IEEE Trans. Electron Devices 41(11), 1926–1935 (1994) CrossRefGoogle Scholar
  21. 52.
    V.V. Ivanov, I.M. Filanovsky, Operational Amplifier Speed and Improvement (Kluwer Academic, Dordrecht, 2004) Google Scholar
  22. 55.
    J. Koh, J.-E. Lee, C.-D. Suh, H.-T. Kim, A 1/f-noise reduction architecture for an operational amplifier in a 0.13 μm standard digital CMOS technology, in IEEE Asian Solid-State Circuits Conference (2006), pp. 179–182 Google Scholar
  23. 64.
    M. Kornfeld, G. May, DVB-H and IP datacast—broadcast to handheld devices. IEEE Trans. Broadcast. 53(1), 161–170 (2007) CrossRefGoogle Scholar
  24. 73.
    Z. Li, J. Ma, M. Yu, Y. Ye, Low-noise operational amplifier design with current driving bulk in 0.25 μm CMOS technology. Int. Conf. ASIC 2, 630–634 (2005) Google Scholar
  25. 74.
    W. Li, L. Xia, Y. Huang, Z. Hong, A 0.13 μm CMOS UWB receiver front-end using passive mixer, in IEEE Asia Pacific Conference on Circuits and Systems (2008), pp. 288–291 Google Scholar
  26. 75.
    B. Lipka, U. Kleine, Design of a cascoded operational amplifier with high gain, in Proc. Mixed Design of Integrated Circuits and Systems (2007), pp. 260–261 Google Scholar
  27. 76.
    T.-Y. Lo, C.-C. Hung, M. Ismail, A wide tuning range Gm-C filter for multi-mode CMOS direct-conversion wireless receivers. IEEE J. Solid-State Circuits 44(9), 2515–2524 (2009) CrossRefGoogle Scholar
  28. 78.
    H. Maarefi, A. Parsa, H. Hatamkhani, D. Shiri, A wide swing 1.5 V fully differential opamp using a rail-to-rail analog CMFB circuit. Midwest Symp. Circuits Syst. 1, 105–108 (2002) Google Scholar
  29. 83.
    Motorola, Inc. Long Term Evolution (LTE) (2007). White Paper Google Scholar
  30. 87.
    G. Palumbo, S. Pennisi, Design methodology and advances in nested-Miller compensation. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 49(7), 893–903 (2002) CrossRefGoogle Scholar
  31. 88.
    Z. Pan, P. Jiang, L. Zhang, C. Mao, Low flicker noise and high linearity passive mixer in 0.18 μm CMOS for direct conversion receiver, in Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics (2009), pp. 21–24 CrossRefGoogle Scholar
  32. 91.
    V.Y. Potanin, E.E. Potanina, High-voltage-tolerant power supply in a low-voltage CMOS technology. IEEE Int. Symp. Circuits Syst. Proc. 1, 393–396 (2004) Google Scholar
  33. 93.
    J. Rapeli, UMTS—a path to 3rd generation mobile communications of the 21st century, in IEEE International Conference on Personal Wireless Communications (1996), pp. 58– 67 Google Scholar
  34. 104.
    W.M.C. Sansen, Analog Design Essentials (Springer, Dordrecht, 2006) Google Scholar
  35. 105.
    F. Schlögl, H. Zimmermann, Opamp with 106 dB DC gain in 120 nm digital CMOS, in European Solid-State Circuits Conference (2003), pp. 381–384 Google Scholar
  36. 106.
    F. Schlögl, H. Zimmermann, 1.5 GHz OPAMP in 120 nm digital CMOS, in European Solid-State Circuits Conference (2004), pp. 239–242 CrossRefGoogle Scholar
  37. 107.
    F. Schlögl, H. Dietrich, H. Zimmermann, 120 nm CMOS operational amplifier with high gain down to ±0.3 V supply, in IEEE International Systems-on-Chip Conference (2003), pp. 121–124 CrossRefGoogle Scholar
  38. 108.
    F. Schlögl, H. Dietrich, H. Zimmermann, High-gain high-speed operational amplifier in digital 120 nm CMOS, in IEEE International SOC Conference (2004), pp. 316–319 Google Scholar
  39. 109.
    B. Shem-Tov, M. Kozak, E.G. Friedman, A high-speed CMOS opamp design technique using negative Miller capacitance, in IEEE International Conference on Electronics, Circuits and Systems (2004), pp. 623–626 Google Scholar
  40. 110.
    M.-H. Shen, Y.-S. Wu, G.-H. Ke, P.-C. Huang, A 0.7 V CMOS operational transconductance amplifier with bulk-driven technique, in International SoC Design Conference (2010), pp. 392–395 Google Scholar
  41. 113.
    G.P. Singh, R.B. Salem, High-voltage-tolerant power I/0 buffers with low-voltage CMOS process. IEEE J. Solid-States Circuits 34(11), 1512–1525 (1999) CrossRefGoogle Scholar
  42. 117.
    U. Tieze, C. Schenk, Halbleiter Schaltungstechnik (Springer, Berlin, 2002) Google Scholar
  43. 127.
    H. Uhrmann, H. Zimmermann, A fully differential operational amplifier for a low-pass filter in a DVB-H receiver, in Proc. Mixed Design of Integrated Circuits and Systems (2009), pp. 197–200 Google Scholar
  44. 128.
    H. Uhrmann, H. Zimmermann, A first-order operational amplifier RC low-pass filter for DVB-H, in Proc. Austrochip (2010), pp. 182–185 Google Scholar
  45. 129.
    H. Uhrmann, F. Schlögl, K. Schweiger, H. Zimmermann, A 1 GHz-GBW operational amplifier for DVB-H receivers in 65 nm CMOS, in Proc. International Symposium on Design and Diagnostics of Electronic Circuits and Systems (2009), pp. 182–185 Google Scholar
  46. 130.
    H. Uhrmann, L. Dörrer, F. Kuttner, K. Schweiger, H. Zimmermann, A mixer-filter combination of a direct conversion receiver for DVB-H applications in 65 nm CMOS, in Proc. Design and Diagnostics of Electronic Circuits and Systems (2010), pp. 209–212 CrossRefGoogle Scholar
  47. 133.
    V.C. Vincence, C. Galup-Montoro, M.C. Schneider, Low-voltage class AB operational amplifier, in Symposium on Integrated Circuits and Systems Design (2001), pp. 207–211 CrossRefGoogle Scholar
  48. 139.
    Z. Wu, F. Rui, Z. Zhi-Yong, C. Wei-Dong, Design of a rail-to-rail constant-gm CMOS operational amplifier. World Congress Comput. Sci. Inf. Eng. 6, 198–201 (2009) Google Scholar
  49. 140.
    W. Yan, H. Zimmermann, A 120 nm CMOS fully differential rail-to-rail I/O opamp with highly constant signal behavior, in IEEE International SOC Conference (2006), pp. 3–6 Google Scholar
  50. 141.
    W. Yan, H. Zimmermann, Speed enhancement and linearity analysis for a rail-to-rail input opamp in 120 nm CMOS, in Proc. Mixed Design of Integrated Circuits and Systems (2007), pp. 344–348 Google Scholar
  51. 142.
    W. Yan, R. Kolm, H. Zimmermann, A low-voltage low-power fully differential rail-to-rail input/output opamp in 65 nm CMOS, in IEEE International Symposium on Circuits and Systems (2008), pp. 2274–2277 Google Scholar
  52. 143.
    W. Yan, R. Kolm, H. Zimmermann, Efficient four-stage frequency compensation for low-voltage amplifiers, in IEEE International Symposium on Circuits and Systems (2008), pp. 2278–2281 Google Scholar
  53. 145.
    U. Yodprasit, C.C. Enz, A 1.5 V 75 dB dynamic range third-order Gm-C filter integrated in a 0.18 μm standard digital CMOS process. IEEE J. Solid-State Circuits 38(7), 1189–1197 (2003) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Heimo Uhrmann
    • 1
  • Robert Kolm
    • 1
  • Horst Zimmermann
    • 1
  1. 1.EMCEVienna University of TechnologyViennaAustria

Personalised recommendations