Gm-C Filters

  • Heimo Uhrmann
  • Robert Kolm
  • Horst Zimmermann
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 45)


Analog filters are required in many mixed-signal systems. They can be used for anti-aliasing purposes, before signals are sampled in an A/D converter or they can be used for reconstructing the signal after a D/A converter. Also at the output of a mixer a filter which suppresses out-of-band interferer signals is necessary. In general, when a filter is designed it is necessary to consider the whole system in which the filter is embedded. Important parameters for filters are in-band and also out-of-band distortions. A high in-band linear dynamic range avoids intermodulation between two in-band signals. Out-of-band distortions are also essential because they describe the immunity against some blockers or disturbances to other channels in a multi-band system. Other important parameters are the noise spectral density or the integrated noise. For some applications the out-of-band spectral noise density should be under a certain level, otherwise the noise would interfere to a neighboring channel. Sometimes, when the same filter is used in the I-path and in the Q-path of a receiver, the mismatch between these two filters should not be too high. G m -C filter topologies, a figure of merit, the state-of-art, the requirements for UWB and three implemented filters are described in this chapter.


Supply Voltage Maximum Gain Amplitude Frequency Response Minimum Gain Operational Transconductance Amplifier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 4.
    A.-J. Annema, B. Nauta, R. van Langevelde, H. Tuinhout, Analog circuits in ultra-deep-submicron CMOS. IEEE J. Solid-State Circuits 40(1), 132–143 (2005) CrossRefGoogle Scholar
  2. 16.
    M. Chen, J. Silva-Martinez, S. Rokhsaz, M. Robinson, A 2-Vpp 80–200 MHz fourth-order continuous-time linear phase filter with automatic frequency tuning. IEEE J. Solid-State Circuits 38(10), 1745–1749 (2003) CrossRefGoogle Scholar
  3. 17.
    S. D’Amico, A. Baschirotto, Compact high-frequency low-power continuous-time gm-C biquad cell. Electron. Lett. 39(11), 821–822 (2003) CrossRefGoogle Scholar
  4. 20.
    S. D’Amico, M. Conta, A. Baschirotto, A 4.1 mW 10 MHz fourth-order source-follower-based continuous-time filter with 79 dB DR. IEEE J. Solid-State Circuits 41(12), 2713–2719 (2006) CrossRefGoogle Scholar
  5. 21.
    M. De Matteis, S. D’Amico, V. Giannini, A. Baschirotto, A 550 mV 8 dBm IIP3 4th order analog base band filter for WLAN receivers, in Proc. European Solid-State Circuits Conference (2007), pp. 504–507 Google Scholar
  6. 22.
    M. De Matteis, S. D’Amico, P. Andriulo, G. Cocciolo, A. Baschirotto, A 4th-order CMOS 65 nm wideband low-power analog filter for wireless receivers, in IEEE International Conference on Electronics, Circuits, and Systems (2009), pp. 191–194 Google Scholar
  7. 29.
    F. Dülger, E. Sanchez-Sinencio, J. Silva-Martinez, A 1.3 V 5 mW fully integrated tunable bandpass filter at 2.1 GHz in 0.35 μm CMOS. IEEE J. Solid-State Circuits 38(6), 918–928 (2003) CrossRefGoogle Scholar
  8. 31.
    C. Enz, M. Punzenberger, D. Python, Low-voltage log-domain signal processing in CMOS and BiCMOS. IEEE Trans. Circuits Syst.-II 46(3), 279–289 (1999) CrossRefGoogle Scholar
  9. 32.
    M.M. Farhad, S. Mirzakuchaki, A second-order Gm-C continuous time tilter in mobile radio receiver architecture. Int. Conf. Educ. Technol. Comput. 5, V5-170–V5-173 (2010) Google Scholar
  10. 33.
    D. Foty, Taking a deep look at analog CMOS. IEEE Circuits Devices Mag. 15(2), 23–28 (1999) CrossRefGoogle Scholar
  11. 34.
    D. Gangopadhyay, T.K. Bhattacharyya, A 2.3 GHz gm-boosted high swing class-ab ultra-wide bandwidth operational amplifier in 0.18 μm CMOS, in IEEE International Midwest Symposium on Circuits and Systems (2010), pp. 713–716 Google Scholar
  12. 35.
    N. Ghittori, A. Vigna, P. Malcovati, S. D’Amico, A. Baschirotto, 1.2 V low-power multi-mode DAC+filter blocks for reconfigurable (WLAN/UMTS, WLAN/bluetooth) transmitters. IEEE J. Solid-State Circuits 41(9), 1970–1982 (2006) CrossRefGoogle Scholar
  13. 36.
    G. Gielen, W. Dehaene, Analog and digital circuit design in 65 nm CMOS: end of the road? Des. Autom. Test in Europe 1, 37–42 (2005) Google Scholar
  14. 37.
    B. Gilbert, A new wide-band amplifier technique. IEEE J. Solid-State Circuits 3(4), 353–365 (1968) CrossRefGoogle Scholar
  15. 38.
    R. Gonzalez, B.M. Gordon, M.A. Horowitz, Supply and threshold voltage scaling for low power CMOS. IEEE J. Solid-State Circuits 32(8), 1210–1216 (1997) CrossRefGoogle Scholar
  16. 39.
    P.R. Gray, P.J. Hurst, S.H. Lewis, R.G. Meyer, Analysis and Design of Analog Integrated Circuits (Wiley, New York, 2001) Google Scholar
  17. 40.
    H.F.A. Hamed, A low-voltage digitally programmable current-mode filter, in International Conference on Microelectronics (2003), pp. 413–416 Google Scholar
  18. 41.
    N.Z. Haron, S. Hamdioui, Why is CMOS scaling coming to an END? in International Design and Test Workshop (2008), pp. 98–103 Google Scholar
  19. 42.
    J. Harrison, N. Weste, 350 MHz opamp-RC filter in 0.18 μm CMOS. Electron. Lett. 38(6), 259–260 (2002) CrossRefGoogle Scholar
  20. 43.
    J.R. Hauser, Extraction of experimental mobility data for MOS devices. IEEE Trans. Electron Devices 43(11), 1981–1988 (1996) CrossRefGoogle Scholar
  21. 44.
    B. Hernes, T. Sæther, Design Criteria for Low Distortion in Feedback Opamp Circuits (Kluwer Academic, Dordrecht, 2003) Google Scholar
  22. 45.
    B. Hernes, W. Sansen, Distortion in single-, two- and three-stage amplifiers. IEEE Trans. Circuits Syst. I, Regul. Pap. 52(5), 846–856 (2005) CrossRefGoogle Scholar
  23. 46.
    F.N. Hooge, 1/f noise sources. IEEE Trans. Electron Devices 41(11), 1926–1935 (1994) CrossRefGoogle Scholar
  24. 47.
    B.J. Hosticka, W. Brockherde, D. Hammerschmidt, R. Kokozinski, Low-voltage CMOS analog circuits. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 42(11), 864–872 (1995) CrossRefGoogle Scholar
  25. 48.
    Y.-S. Hwang, J.-J. Chen, J.-H. Lai, P.-W. Sheu, Fully differential current-mode third-order Butterworth VHF Gm-C filter in 0.18 μm CMOS. IEE Proc., Circuits Devices Syst. 153(6), 552–558 (2006) CrossRefGoogle Scholar
  26. 49.
    J.-S. Hyun, K.S. Yoon, Design of a 3V–50 MHz analog CMOS current-mode NRL filter. IEEE Int. Symp. Circuits Syst. Proc. 1, 129–132 (1996) Google Scholar
  27. 50.
    K. Imai et al., CMOS device optimization for system-on-a-chip applications, in Proc. IEEE International Electron Devices Meeting (2000), pp. 455–458 Google Scholar
  28. 51.
    T. Itakura, T. Ueno, H. Tanimoto, T. Arai, A 2 Vpp linear input-range fully balanced CMOS transconductor and its application to a 2.5 v 2.5 MHz Gm-C LPF, in Proc. of IEEE Custom Integrated Circuits Conference (1999), pp. 509–512 Google Scholar
  29. 52.
    V.V. Ivanov, I.M. Filanovsky, Operational Amplifier Speed and Improvement (Kluwer Academic, Dordrecht, 2004) Google Scholar
  30. 53.
    H. Iwai, Recent status on nano CMOS and future direction, in International Workshop on Nano CMOS (2006), pp. 1–5 CrossRefGoogle Scholar
  31. 54.
    F. Ji, J.P. Xu, J.J. Chen, H.X. Xu, C.X. Li, P.T. Lai, A compact threshold-voltage model of MOSFETs with stack high-k gate dielectric, in IEEE International Conference of Electron Devices and Solid-State Circuits (2009), pp. 236–239 Google Scholar
  32. 55.
    J. Koh, J.-E. Lee, C.-D. Suh, H.-T. Kim, A 1/f-noise reduction architecture for an operational amplifier in a 0.13 μm standard digital CMOS technology, in IEEE Asian Solid-State Circuits Conference (2006), pp. 179–182 Google Scholar
  33. 56.
    R. Kolm, H. Zimmermann, A linear CMOS operational transconductance amplifier in 120 nm technology, in Proc. of Conference of Mixed Design of Integrated Circuits and Systems (2005), pp. 29–32 Google Scholar
  34. 57.
    R. Kolm, H. Zimmermann, A linear transconductor and its application in an analog filter in 120 nm CMOS, in Proc. of IEEE International Symposium on Circuits and Systems (2006), pp. 2829–2832 Google Scholar
  35. 58.
    R. Kolm, H. Zimmermann, Digital programmable gmC-filter in 120 nm CMOS technology, in Proc. of IEEE Conference of Mixed Design of Integrated Circuits and Systems (2006), pp. 281–284 Google Scholar
  36. 59.
    R. Kolm, H. Zimmermann, A 3rd-order 235 MHz low-pass gmC-filter in 120 nm CMOS, in Proc. of European Solid-State Circuits Conference (2006), pp. 215–218 Google Scholar
  37. 60.
    R. Kolm, H. Zimmermann, 3rd-order current-input/output filter with virtual ground in 65 nm CMOS, in Proc. of Austrochip 2007 Conference (2007), pp. 35–38 Google Scholar
  38. 61.
    R. Kolm, W. Yan, H. Zimmermann, Current-mode filter in 65 nm CMOS for a software-radio application, in IEEE International Symposium on Circuits and Systems (2008), pp. 3130–3133 Google Scholar
  39. 62.
    R. Kolm, W. Yan, H. Zimmermann, 3rd-order current-input voltage-output filter in 120 nm CMOS. Informationstagung Mikroelektronik 08, 269–272 (2008) Google Scholar
  40. 63.
    J.V. Kumar, K.R. Rao, A low-voltage low-power CMOS companding filter, in International Conference on VLSI Design (2003), 309–314 Google Scholar
  41. 64.
    M. Kornfeld, G. May, DVB-H and IP datacast—broadcast to handheld devices. IEEE Trans. Broadcast. 53(1), 161–170 (2007) CrossRefGoogle Scholar
  42. 65.
    M. Kosunen, K. Koli, K. Halonen, A 50 MHz 5th-order elliptic LP-filter using current-mode Gm-C topology. IEEE Int. Symp. Circuits Syst. Proc. 1, 512–515 (1998) Google Scholar
  43. 66.
    H.Y.-F. Lam, Analog and Digital Filters: Design and Realization (Prentice Hall, New York, 1979) Google Scholar
  44. 67.
    C. Laoudias, C. Psychalinos, Low-voltage CMOS current-mode filters using current mirrors: two alternative approaches, in IEEE Mediterranean Electrotechnical Conference (2008), pp. 435–440 Google Scholar
  45. 68.
    S.-S. Lee, R.H. Zele, D.J. Allstot, G. Liang, A continuous-time current-mode integrator. IEEE Trans. Circuits Syst. 38(10), 1236–1238 (1991) CrossRefGoogle Scholar
  46. 69.
    S.-S. Lee, R.H. Zele, D.J. Allstot, G. Liang, CMOS continuous-time current-mode filters for high-frequency applications. IEEE J. Solid-State Circuits 28(3), 323–329 (1993) CrossRefGoogle Scholar
  47. 70.
    J.-H. Lee, S.-Y. Kim, I. Cho, S. Hwang, J.-H. Lee, 1/f noise characteristics of sub-100 nm MOS transistors. J. Semicond. Technol. Sci. 6(1), 38–42 (2006) Google Scholar
  48. 71.
    A. Lewinski, J. Silva-Martinez, OTA linearity enhancement technique for high frequency applications with IM3 below −65 dB, in Proc. of IEEE Custom Integrated Circuits Conference (2003), pp. 9–12 Google Scholar
  49. 72.
    L.L. Lewyn, T. Ytterdal, C. Wulff, K. Martin, Analog circuit design in nanoscale CMOS technologies. Proc. IEEE 97(10), 1687–1714 (2009) CrossRefGoogle Scholar
  50. 73.
    Z. Li, J. Ma, M. Yu, Y. Ye, Low-noise operational amplifier design with current driving bulk in 0.25 μm CMOS technology. Int. Conf. ASIC 2, 630–634 (2005) Google Scholar
  51. 74.
    W. Li, L. Xia, Y. Huang, Z. Hong, A 0.13 μm CMOS UWB receiver front-end using passive mixer, in IEEE Asia Pacific Conference on Circuits and Systems (2008), pp. 288–291 Google Scholar
  52. 75.
    B. Lipka, U. Kleine, Design of a cascoded operational amplifier with high gain, in Proc. Mixed Design of Integrated Circuits and Systems (2007), pp. 260–261 Google Scholar
  53. 76.
    T.-Y. Lo, C.-C. Hung, M. Ismail, A wide tuning range Gm-C filter for multi-mode CMOS direct-conversion wireless receivers. IEEE J. Solid-State Circuits 44(9), 2515–2524 (2009) CrossRefGoogle Scholar
  54. 77.
    Z. Luo, A. Steegen, M. Eller, R. Mann, C. Baiocco, P. Nguyen, L. Kim, M. Hoinkis, V. Ku, V. Klee, F. Jamin, P. Wrschka, P. Shafer, W. Lin, S. Fang, A. Ajmera, W. Tan, D. Park, R. Mo, J. Lian, D. Vietzke, C. Coppock, A. Vayshenker, T. Hook, V. Chan, K. Kim, A. Cowley, S. Kim, E. Kaltalioglu, B. Zhang, S. Marokkey, Y. Lin, K. Lee, H. Zhu, M. Weybright, R. Rengarajan, J. Ku, T. Schiml, J. Sudijono, I. Yang, C. Wann, High performance and low power transistors integrated in 65 nm bulk CMOS technology, in International Electron Devices Meeting (2004), pp. 661–664 Google Scholar
  55. 78.
    H. Maarefi, A. Parsa, H. Hatamkhani, D. Shiri, A wide swing 1.5 V fully differential opamp using a rail-to-rail analog CMFB circuit. Midwest Symp. Circuits Syst. 1, 105–108 (2002) Google Scholar
  56. 79.
    S. Maeda, Y.-S. Jin, J.-A. Choi, S.-Y. Oh, H.-W. Lee, J.-Y. Yoo, M.-C. Sun, J.-H. Ku, K. Lee, S.-G. Bae, S.-G. Kang, J.-H. Yang, Y.-W. Kim, K.-P. Suh, Impact of mechanical stress engineering on flicker noise characteristics, in Symposium on VLSI Technology (2004), pp. 102–103 Google Scholar
  57. 80.
    J. Manhattanakul, C. Toumazou, Current-mode versus voltage-mode Gm-C biquad filters: what the theory says. Trans. Circuits Syst.-II 45(2), 173–186 (1998) CrossRefGoogle Scholar
  58. 81.
    J.W. McPherson, Reliability trends with advanced CMOS scaling and the implications for design, in IEEE Custom Integrated Circuits Conference (2007), pp. 405–412 Google Scholar
  59. 82.
    A. Mercha, W. Jeamsaksiri, J. Ramos, S. Jenei, S. Decoutere, D. Linten, P. Wambacq, Impact of scaling on analog/RF CMOS performance. IEEE Solid-State Integr. Circuits Technol. 1, 147–152 (2004) Google Scholar
  60. 83.
    Motorola, Inc. Long Term Evolution (LTE) (2007). White Paper Google Scholar
  61. 84.
    B. Nauta, A CMOS transconductance-C filter technique for very high frequencies. IEEE J. Solid-State Circuits 27(2), 142–153 (1992) CrossRefGoogle Scholar
  62. 86.
    A. Otin, S. Celma, C. Aldea, A design strategy for VHF filters with digital programmability, in IEEE International Symposium on Circuits and Systems (2006), pp. 1059–1062 Google Scholar
  63. 90.
    A.H. Perera et al., A versatile 0.13 μm CMOS platform technology supporting high performance and low power applications, in Proc. IEEE International Electron Devices Meeting (2000), pp. 571–574 Google Scholar
  64. 94.
    B. Razavi, T. Aytur, C. Lam, F.-R. Yang, K.-Y. Li, R.H. Yan, H.-C. Kang, C.-C. Hsu, C.-C. Lee, A UWB CMOS transeiver. IEEE J. Solid-State Circuits 40(12), 2555–2562 (2005) CrossRefGoogle Scholar
  65. 100.
    J.C. Rudell, O.E. Erdogan, D.G. Yee, R. Brockenbrough, C.S.G. Conroy, B. Kim, A 5th-order continuous-time harmonic-rejection GmC filter with in-situ calibration for use in transmitter applications, in Proc. of IEEE International Solid-State Circuits Conference (2005), pp. 322–323 Google Scholar
  66. 101.
    V. Saari, J. Ryynanen, J. Mustola, K. Halonen, A 10 MHz channel-select filter for a multicarrier WCDMA base-station, in Proc. of IEEE International Symposium on Circuits and Systems (2006), pp. 1055–1058 Google Scholar
  67. 102.
    E. Sanchez-Sinencio, J. Silva-Martinez, CMOS transconductance amplifiers, architectures and active filters: a tutorial. IEE Proc., Circuits Devices Syst. 147(1), 3–12 (2000) CrossRefGoogle Scholar
  68. 111.
    T.D. Shockley, C.F. Morris, Computerized design and tuning of active filters. IEEE Trans. Circuit Theory 20(4), 438–441 (1973) CrossRefGoogle Scholar
  69. 114.
    S.L. Smith, E. Sanchez-Sinencio, Low voltage integrators for high-frequency CMOS filters using current-mode techniques. IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process. 43(1), 39–48 (1996) CrossRefGoogle Scholar
  70. 119.
    C. Toumazou, G. Moschytz, B. Gilbert (eds.), Trade-Offs in Analog Circuit Design (Kluwer Academic, Dordrecht, 2002) Google Scholar
  71. 132.
    A. Vasilopoulos, G. Vitzilaios, G. Theodoratos, Y. Papananos, A low-power wideband reconfigurable integrated active-RC filter with 73 dB SFDR. IEEE J. Solid-State Circuits 41(9), 1997–2008 (2006) CrossRefGoogle Scholar
  72. 134.
    E.A. Vittoz, Future of analog in the VLSI environment. IEEE Int. Symp. Circuits Syst. Proc. 2, 1372–1375 (1990) CrossRefGoogle Scholar
  73. 145.
    U. Yodprasit, C.C. Enz, A 1.5 V 75 dB dynamic range third-order Gm-C filter integrated in a 0.18 μm standard digital CMOS process. IEEE J. Solid-State Circuits 38(7), 1189–1197 (2003) Google Scholar
  74. 148.
    R.H. Zele, D.J. Allstot, Low-power CMOS continuous-time filters. IEEE J. Solid-State Circuits 31(2), 157–168 (1996) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Heimo Uhrmann
    • 1
  • Robert Kolm
    • 1
  • Horst Zimmermann
    • 1
  1. 1.EMCEVienna University of TechnologyViennaAustria

Personalised recommendations