CMOS Technology

  • Heimo Uhrmann
  • Robert Kolm
  • Horst Zimmermann
Part of the Springer Series in Advanced Microelectronics book series (MICROELECTR., volume 45)


The complementary metal oxide semiconductor technology, where the semiconductor is silicon, is the most rapidly developing high-tech fabrication technique. Products like mobile phones would not be affordable and their volume and weight would not be as small without modern CMOS processes. Modern deep-submicron and nanometer CMOS, however, is somewhat different to CMOS described in many textbooks. Full-custom design of analog circuits, which is essential for high-volume systems on chip as e.g. for mobile phones and smart phones, needs detailed knowledge of the CMOS process, of the devices being available in this process, and of the parasitics. In this chapter, the difficulties of scaling, the 120 nm CMOS, and the 65 nm low-power CMOS process used for the fabrication of the circuits introduced in this book will be described.


Metal Layer CMOS Technology Analog Circuit CMOS Process Metal Insulator Metal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 4.
    A.-J. Annema, B. Nauta, R. van Langevelde, H. Tuinhout, Analog circuits in ultra-deep-submicron CMOS. IEEE J. Solid-State Circuits 40(1), 132–143 (2005) CrossRefGoogle Scholar
  2. 6.
    P. Bai, C. Auth, S. Balakrishnan, M. Bost, R. Brain, V. Chikarmane, R. Heussner, M. Hussein, J. Hwang, D. Ingerly, R. James, J. Jeong, C. Kenyon, E. Lee, S.-H. Lee, N. Lindert, M. Liu, Z. Ma, T. Marieb, A. Murthy, R. Nagisetty, S. Natarajan, J. Neirynck, A. Ott, C. Parker, J. Sebastian, R. Shaheed, S. Sivakumar, J. Steigerwald, S. Tyagi, C. Weber, B. Woolery, A. Yeoh, K. Zhang, M. Bohr, A 65 nm logic technology featuring 35 nm gate lengths, enhanced channel strain, 8 Cu interconnect layers, low-k ILD and 0.57 μm2 SRAM cell, in International Electron Devices Meeting (2004), pp. 657–660 Google Scholar
  3. 12.
    A.P. Chandrakasan, S. Sheng, R.W. Brodersen, Low-power CMOS digital design. IEEE J. Solid-State Circuits 27(4), 473–484 (1992) CrossRefGoogle Scholar
  4. 14.
    M.-C. Chang, C.-S. Chang, C.-P. Chao, K.-I. Goto, M. Ieong, L.-C. Lu, C.H. Diaz, Transistor- and circuit-design optimization for low-power CMOS. IEEE Trans. Electron Devices 55(1), 84–95 (2008) CrossRefGoogle Scholar
  5. 26.
    C.H. Diaz, CMOS technology for MS/RF SoC, in IEEE Workshop on Microelectronics and Electron Devices (2004), pp. 24–27 Google Scholar
  6. 33.
    D. Foty, Taking a deep look at analog CMOS. IEEE Circuits Devices Mag. 15(2), 23–28 (1999) CrossRefGoogle Scholar
  7. 41.
    N.Z. Haron, S. Hamdioui, Why is CMOS scaling coming to an END? in International Design and Test Workshop (2008), pp. 98–103 Google Scholar
  8. 43.
    J.R. Hauser, Extraction of experimental mobility data for MOS devices. IEEE Trans. Electron Devices 43(11), 1981–1988 (1996) CrossRefGoogle Scholar
  9. 50.
    K. Imai et al., CMOS device optimization for system-on-a-chip applications, in Proc. IEEE International Electron Devices Meeting (2000), pp. 455–458 Google Scholar
  10. 53.
    H. Iwai, Recent status on nano CMOS and future direction, in International Workshop on Nano CMOS (2006), pp. 1–5 CrossRefGoogle Scholar
  11. 54.
    F. Ji, J.P. Xu, J.J. Chen, H.X. Xu, C.X. Li, P.T. Lai, A compact threshold-voltage model of MOSFETs with stack high-k gate dielectric, in IEEE International Conference of Electron Devices and Solid-State Circuits (2009), pp. 236–239 Google Scholar
  12. 70.
    J.-H. Lee, S.-Y. Kim, I. Cho, S. Hwang, J.-H. Lee, 1/f noise characteristics of sub-100 nm MOS transistors. J. Semicond. Technol. Sci. 6(1), 38–42 (2006) Google Scholar
  13. 72.
    L.L. Lewyn, T. Ytterdal, C. Wulff, K. Martin, Analog circuit design in nanoscale CMOS technologies. Proc. IEEE 97(10), 1687–1714 (2009) CrossRefGoogle Scholar
  14. 77.
    Z. Luo, A. Steegen, M. Eller, R. Mann, C. Baiocco, P. Nguyen, L. Kim, M. Hoinkis, V. Ku, V. Klee, F. Jamin, P. Wrschka, P. Shafer, W. Lin, S. Fang, A. Ajmera, W. Tan, D. Park, R. Mo, J. Lian, D. Vietzke, C. Coppock, A. Vayshenker, T. Hook, V. Chan, K. Kim, A. Cowley, S. Kim, E. Kaltalioglu, B. Zhang, S. Marokkey, Y. Lin, K. Lee, H. Zhu, M. Weybright, R. Rengarajan, J. Ku, T. Schiml, J. Sudijono, I. Yang, C. Wann, High performance and low power transistors integrated in 65 nm bulk CMOS technology, in International Electron Devices Meeting (2004), pp. 661–664 Google Scholar
  15. 79.
    S. Maeda, Y.-S. Jin, J.-A. Choi, S.-Y. Oh, H.-W. Lee, J.-Y. Yoo, M.-C. Sun, J.-H. Ku, K. Lee, S.-G. Bae, S.-G. Kang, J.-H. Yang, Y.-W. Kim, K.-P. Suh, Impact of mechanical stress engineering on flicker noise characteristics, in Symposium on VLSI Technology (2004), pp. 102–103 Google Scholar
  16. 81.
    J.W. McPherson, Reliability trends with advanced CMOS scaling and the implications for design, in IEEE Custom Integrated Circuits Conference (2007), pp. 405–412 Google Scholar
  17. 82.
    A. Mercha, W. Jeamsaksiri, J. Ramos, S. Jenei, S. Decoutere, D. Linten, P. Wambacq, Impact of scaling on analog/RF CMOS performance. IEEE Solid-State Integr. Circuits Technol. 1, 147–152 (2004) Google Scholar
  18. 85.
    T.H. Ning, CMOS in the new millennium, in IEEE 2000 Custom Integrated Circuits Conference (2000), pp. 49–56 Google Scholar
  19. 89.
    H.-J. Park, P.K. Ko, C. Hu, A charge sheet capacitance model of short channel MOSFETs for SPICE. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 10(3), 376–389 (1991) CrossRefGoogle Scholar
  20. 90.
    A.H. Perera et al., A versatile 0.13 μm CMOS platform technology supporting high performance and low power applications, in Proc. IEEE International Electron Devices Meeting (2000), pp. 571–574 Google Scholar
  21. 95.
    P. Rickert, B. Haroun, SoC integration in deep submicron CMOS, in IEEE International Electron Devices Meeting (2004), pp. 653–656 Google Scholar
  22. 104.
    W.M.C. Sansen, Analog Design Essentials (Springer, Dordrecht, 2006) Google Scholar
  23. 115.
    B. Tavel, M. Bidaud, N. Emonet, D. Barge, N. Planes, H. Brut, D. Roy, J.C. Vildeuil, R. Difrenza, K. Rochereau, M. Denais, V. Huard, P. Llinares, S. Bruyere, C. Parthasarthy, N. Revil, R. Pantel, F. Guyader, L. Vishnubotla, K. Barla, F. Arnaud, P. Stolk, M. Woo, Thin oxynitride solution for digital and mixed-signal 65 nm CMOS platform, in International Electron Devices Meeting (2003), pp. 643–646 Google Scholar
  24. 116.
    S.E. Thompson, R.S. Chau, T. Ghani, K. Mistry, S. Tyagi, M.T. Bohr, In search of “forever,” continued transistor scaling one new material at a time. IEEE Trans. Semicond. Manuf. 18(1), 26–36 (2005) CrossRefGoogle Scholar
  25. 131.
    R. van Langevelde, L.F. Tiemeijer, R.J. Havens, M.J. Knitel, R.F.M. Roes, P.H. Woerlee, D.B.M. Klaassen, RF-distortion in deep-submicron CMOS technologies, in International Electron Devices Meeting (2000), pp. 807–810 Google Scholar
  26. 138.
    H. Wong, M.C. Poon, Approximation of the length of velocity saturation region in MOSFET’s. IEEE Trans. Electron Devices 44(11), 2033–2036 (1997) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Heimo Uhrmann
    • 1
  • Robert Kolm
    • 1
  • Horst Zimmermann
    • 1
  1. 1.EMCEVienna University of TechnologyViennaAustria

Personalised recommendations