Skip to main content

Gut Microbes, Diet, and Cancer

  • Conference paper
  • First Online:
Advances in Nutrition and Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 159))

Abstract

An expanding body of evidence supports a role for gut microbes in the etiology of cancer. Previously, the focus was on identifying individual bacterial species that directly initiate or promote gastrointestinal malignancies; however, the capacity of gut microbes to influence systemic inflammation and other downstream pathways suggests that the gut microbial community may also affect risk of cancer in tissues outside of the gastrointestinal tract. Functional contributions of the gut microbiota that may influence cancer susceptibility in the broad sense include (1) harvesting otherwise inaccessible nutrients and/or sources of energy from the diet (i.e., fermentation of dietary fibers and resistant starch); (2) metabolism of xenobiotics, both potentially beneficial or detrimental (i.e., dietary constituents, drugs, carcinogens, etc.); (3) renewal of gut epithelial cells and maintenance of mucosal integrity; and (4) affecting immune system development and activity. Understanding the complex and dynamic interplay between the gut microbiome, host immune system, and dietary exposures may help elucidate mechanisms for carcinogenesis and guide future cancer prevention and treatment strategies.

Supported by US NIH grants U01 CA162077, R01 DK084157 and Fred Hutchinson Cancer Research Center.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

PRR:

Pattern recognition receptors

ETFB:

Enterogenic Bacteroides fragilis

LPS:

Lipopolysaccharide

TLR-4:

Toll-like receptor -4

LBP:

LPS-binding protein

MSI:

Microsatellite unstable

CIN:

Chromosomal unstable

SRB:

Sulfate-reducing bacteria

UC:

Ulcerative colitis

NOC:

N-nitroso compounds

ODC:

Ornithine decarboxylase

DFMO:

Difluoromethylornithine

ODMA:

O-desmethylangolensin

ITC:

Isothiocyanates

EHC:

Enterohepatic circulation

SBA:

Secondary bile acids

CA:

Cholic acid

DCA:

Deoxycholic acid

LCA:

Lithocholic acid

E2 :

Estradiol

E1 :

Estrone

E1S:

Estrone-3-sulfate

E3 :

Estriol

DHEA:

Dehydroepiandrosterone

16α-OHE1:

16α-hydroxyestrone

TRFLP:

Terminal restriction length polymorphism

SHBG:

Sex-hormone-binding globulin

References

  1. Abreu MT (2010) Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol 10:131–144

    Article  PubMed  CAS  Google Scholar 

  2. Adlercreutz H, Martin F (1980) Biliary excretion and intestinal metabolism of progesterone and estrogens in man. J Steroid Biochem 13:231–244

    Article  PubMed  CAS  Google Scholar 

  3. Adlercreutz H, Martin F, Pulkkinen M et al (1976) Intestinal metabolism of estrogens. J Clin Endocrinol Metab 43:497–505

    Article  PubMed  CAS  Google Scholar 

  4. Adlercreutz H, Martin F, Lehtinen T et al (1977) Effect of ampicillin administration on plasma conjugated and unconjugated estrogen and progesterone levels in pregnancy. Am J Obstet Gynecol 128:266–271

    PubMed  CAS  Google Scholar 

  5. Amann RI, Binder BJ, Olson RJ et al (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    PubMed  CAS  Google Scholar 

  6. Arai Y, Uehara M, Sato Y et al (2000) Comparison of isoflavones among dietary intake, plasma concentration and urinary excretion for accurate estimation of phytoestrogen intake. J Epidemiol 10:127–135

    Article  PubMed  CAS  Google Scholar 

  7. Arora A, Nair MG, Strasburg GM (1998) Antioxidant activities of isoflavones and their biological metabolites in a liposomal system. Arch Biochem Biophys 356:133–141

    Article  PubMed  CAS  Google Scholar 

  8. Arts CJM, Govers CARL, Van den Berg H et al (1991) In vitro binding of estrogens by dietary fiber and the in vivo apparent digestibility tested in pigs. J Steroid Biochem Mol Biol 38:621–628

    Article  PubMed  CAS  Google Scholar 

  9. Arumugam M, Raes J, Pelletier E et al (2011) Enterotypes of the human gut microbiome. Nature 473:174–180

    Article  PubMed  CAS  Google Scholar 

  10. Atkinson C, Skor HE, Dawn Fitzgibbons E et al (2003) Urinary equol excretion in relation to 2-hydroxyestrone and 16alpha-hydroxyestrone concentrations: an observational study of young to middle-aged women. J Steroid Biochem Mol Biol 86:71–77

    Article  PubMed  CAS  Google Scholar 

  11. Atkinson C, Berman S, Humbert O et al (2004) In vitro incubation of human feces with daidzein and antibiotics suggests interindividual differences in the bacteria responsible for equol production. J Nutr 134:596–599

    PubMed  CAS  Google Scholar 

  12. Atkinson C, Newton KM, Stanczyk FZ et al (2008) Daidzein-metabolizing phenotypes in relation to serum hormones and sex hormone binding globulin, and urinary estrogen metabolites in premenopausal women in the United States. Cancer Causes Control 19:1085–1093

    Article  PubMed  Google Scholar 

  13. Attene-Ramos MS, Wagner ED, Plewa MJ et al (2006) Evidence that hydrogen sulfide is a genotoxic agent. Mol Cancer Res 4:9–14

    Article  PubMed  CAS  Google Scholar 

  14. Attene-Ramos MS, Wagner ED, Gaskins HR et al (2007) Hydrogen sulfide induces direct radical-associated DNA damage. Mol Cancer Res 5:455–459

    Article  PubMed  CAS  Google Scholar 

  15. Balamurugan R, Rajendiran E, George S et al (2008) Real-time polymerase chain reaction quantification of specific butyrate-producing bacteria, Desulfovibrio and Enterococcus faecalis in the feces of patients with colorectal cancer. J Gastroenterol Hepatol 23:1298–1303

    Article  PubMed  CAS  Google Scholar 

  16. Barry DP, Asim M, Leiman DA et al (2011) Difluoromethylornithine is a novel inhibitor of Helicobacter pylori growth, CagA translocation, and interleukin-8 induction. PLoS ONE 6:e17510

    Article  PubMed  CAS  Google Scholar 

  17. Bastide NM, Pierre FH, Corpet DE (2011) Heme iron from meat and risk of colorectal cancer: a meta-analysis and a review of the mechanisms involved. Cancer Prev Res (Phila) 4:177–184

    Article  CAS  Google Scholar 

  18. Bayerdorffer E, Mannes GA, Richter WO et al (1993) Increased serum deoxycholic acid levels in men with colorectal adenomas. Gastroenterology 104:145–151

    PubMed  CAS  Google Scholar 

  19. Bayerdorffer E, Mannes GA, Ochsenkuhn T et al (1994) Variation of serum bile acids in patients with colorectal adenomas during a one-year follow-up. Digestion 55:121–129

    Article  PubMed  CAS  Google Scholar 

  20. Berg RD (1996) The indigenous gastrointestinal microflora. Trends Microbiol 4:430–435

    Article  PubMed  CAS  Google Scholar 

  21. Bernstein C, Holubec H, Bhattacharyya AK et al (2011) Carcinogenicity of deoxycholate, a secondary bile acid. Arch Toxicol 85:863–871

    Article  PubMed  CAS  Google Scholar 

  22. Bingham SA, Hughes R, Cross AJ (2002) Effect of white versus red meat on endogenous N-nitrosation in the human colon and further evidence of a dose response. J Nutr 132:3522S–3525S

    PubMed  CAS  Google Scholar 

  23. Blaser MJ (2008) Understanding microbe-induced cancers. Cancer Prev Res 1:15–20

    Article  Google Scholar 

  24. Bokkenheuser VD, Winter J (1980) Biotransformation of steroid hormones by gut bacteria. Am J Clin Nutr 33:2502–2506

    PubMed  CAS  Google Scholar 

  25. Bos JL (1989) ras oncogenes in human cancer: a review. Cancer Res 49:4682–4689

    PubMed  CAS  Google Scholar 

  26. Brabban AD, Edwards C (1994) Isolation of glucosinolate degrading microorganisms and their potential for reducing the glucosinolate content of rapemeal. FEMS Microbiol Lett 119:83–88

    Article  PubMed  CAS  Google Scholar 

  27. Burnett-Hartman AN, Newcomb PA, Potter JD (2008) Infectious agents and colorectal cancer: a review of Helicobacter pylori, Streptococcus bovis, JC virus, and human papillomavirus. Cancer Epidemiol Biomarkers Prev 17:2970–2979

    Article  PubMed  Google Scholar 

  28. Cammarota R, Bertolini V, Pennesi G et al (2010) The tumor microenvironment of colorectal cancer: stromal TLR-4 expression as a potential prognostic marker. J Transl Med 8:112

    Article  PubMed  CAS  Google Scholar 

  29. Cani PD, Neyrinck AM, Fava F et al (2007) Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50:2374–2383

    Article  PubMed  CAS  Google Scholar 

  30. Cani PD, Amar J, Iglesias MA et al (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56:1761–1772

    Article  PubMed  CAS  Google Scholar 

  31. Castellarin M, Warren RL, Freeman JD et al (2011) Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res 22:299

    Google Scholar 

  32. Chang YC, Nair MG (1995) Metabolism of daidzein and genistein by intestinal bacteria. J Nat Prod 58:1892–1896

    Article  PubMed  CAS  Google Scholar 

  33. Chen RFL, Wang Y et al (2011) LBP and CD14 polymorphisms correlate with increased colorectal carcinoma risk in Han Chinese. World J Gastroenterol 17:2326–2331

    Article  PubMed  CAS  Google Scholar 

  34. Christl SU, Eisner HD, Dusel G et al (1996) Antagonistic effects of sulfide and butyrate on proliferation of colonic mucosa: a potential role for these agents in the pathogenesis of ulcerative colitis. Dig Dis Sci 41:2477–2481

    Article  PubMed  CAS  Google Scholar 

  35. Conaway CC, Getahun SM, Liebes LL et al (2000) Disposition of glucosinolates and sulforaphane in humans after ingestion of steamed and fresh broccoli. Nutr Cancer 38:168–178

    Article  PubMed  CAS  Google Scholar 

  36. Conterno L, Fava F, Viola R et al (2011) Obesity and the gut microbiota: does up-regulating colonic fermentation protect against obesity and metabolic disease? Genes Nutr 6:241–260

    Article  PubMed  CAS  Google Scholar 

  37. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867

    Article  PubMed  CAS  Google Scholar 

  38. Creely SJ, McTernan PG, Kusminski CM et al (2007) Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. Am J Physiol Endocrinol Metab 292:E740–E747

    Article  PubMed  CAS  Google Scholar 

  39. Cross AJ, Pollock JR, Bingham SA (2003) Haem, not protein or inorganic iron, is responsible for endogenous intestinal N-nitrosation arising from red meat. Cancer Res 63:2358–2360

    PubMed  CAS  Google Scholar 

  40. Cummings JH, Wiggins HS, Jenkins DJ et al (1978) Influence of diets high and low in animal fat on bowel habit, gastrointestinal transit time, fecal microflora, bile acid, and fat excretion. J Clin Invest 61:953–963

    Article  PubMed  CAS  Google Scholar 

  41. Dabek M, McCrae SI, Stevens VJ et al (2008) Distribution of beta-glucosidase and beta-glucuronidase activity and of beta-glucuronidase gene gus in human colonic bacteria. FEMS Microbiol Ecol 66:487–495

    Article  PubMed  CAS  Google Scholar 

  42. De Flora S, Bonanni P (2011) The prevention of infection-associated cancers. Carcinogenesis 32:787–795

    Article  PubMed  CAS  Google Scholar 

  43. Decroos K, Vanhemmens S, Cattoir S et al (2005) Isolation and characterisation of an equol-producing mixed microbial culture from a human faecal sample and its activity under gastrointestinal conditions. Arch Microbiol 183:45–55

    Article  PubMed  CAS  Google Scholar 

  44. Deplancke B, Gaskins HR (2003) Hydrogen sulfide induces serum-independent cell cycle entry in nontransformed rat intestinal epithelial cells. FASEB J 17:1310–1312

    PubMed  CAS  Google Scholar 

  45. Deplancke B, Hristova KR, Oakley HA et al (2000) Molecular ecological analysis of the succession and diversity of sulfate-reducing bacteria in the mouse gastrointestinal tract. Appl Environ Microbiol 66:2166–2174

    Article  PubMed  CAS  Google Scholar 

  46. Deplancke B, Finster K, Graham WV et al (2003) Gastrointestinal and microbial responses to sulfate-supplemented drinking water in mice. Exp Biol Med (Maywood) 228:424–433

    CAS  Google Scholar 

  47. Doerner KC, Takamine F, LaVoie CP et al (1997) Assessment of fecal bacteria with bile acid 7 alpha-dehydroxylating activity for the presence of bai-like genes. Appl Environ Microbiol 63:1185–1188

    PubMed  CAS  Google Scholar 

  48. Duncan AM, Merz-Demlow BE, Xu X et al (2000) Premenopausal equol excretors show plasma hormone profiles associated with lowered risk of breast cancer. Cancer Epidemiol Biomarkers Prev 9:581–586

    PubMed  CAS  Google Scholar 

  49. Eckburg PB, Bik EM, Bernstein CN et al (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    Article  PubMed  Google Scholar 

  50. Elfoul L, Rabot S, Khelifa N et al (2001) Formation of allyl isothiocyanate from sinigrin in the digestive tract of rats monoassociated with a human colonic strain of Bacteroides thetaiotaomicron. FEMS Microbiol Lett 197:99–103

    Article  PubMed  CAS  Google Scholar 

  51. Ernst P (1999) Review article: the role of inflammation in the pathogenesis of gastric cancer. Aliment Pharmacol Ther 13(Suppl 1):13–18

    Article  PubMed  Google Scholar 

  52. Florin T, Neale G, Gibson GR et al (1991) Metabolism of dietary sulfate—absorption and excretion in humans. Gut 32:766–773

    Article  PubMed  CAS  Google Scholar 

  53. Frank DN, Pace NR (2001) Molecular-phylogenetic analyses of human gastrointestinal microbiota. Curr Opin Gastroenterol 17:52–57

    Article  PubMed  CAS  Google Scholar 

  54. Frankenfeld CL, McTiernan A, Aiello EJ et al (2004) Mammographic density in relation to daidzein-metabolizing phenotypes in overweight, postmenopausal women. Cancer Epidemiol Biomarkers Prev 13:1156–1162

    PubMed  CAS  Google Scholar 

  55. Friedrich MW (2002) Phylogenetic analysis reveals multiple lateral transfers of adenosine-5′-phosphosulfate reductase genes among sulfate-reducing microorganisms. J Bacteriol 184:278–289

    Article  PubMed  CAS  Google Scholar 

  56. Fukata M, Abreu MT (2007) TLR4 signalling in the intestine in health and disease. Biochem Soc Trans 35:1473–1478

    Article  PubMed  CAS  Google Scholar 

  57. Gerner EW (2007) Impact of dietary amino acids and polyamines on intestinal carcinogenesis and chemoprevention in mouse models. Biochem Soc Trans 35:322–325

    Article  PubMed  CAS  Google Scholar 

  58. Gerner EW, Meyskens FL Jr (2009) Combination chemoprevention for colon cancer targeting polyamine synthesis and inflammation. Clin Cancer Res 15:758–761

    Article  PubMed  CAS  Google Scholar 

  59. Gibson GR, Cummings JH, Macfarlane GT (1988) Use of a three-stage continuous culture system to study the effect of mucin on dissimilatory sulfate reduction and methanogenesis by mixed populations of human gut bacteria. Appl Environ Microbiol 54:2750–2755

    PubMed  CAS  Google Scholar 

  60. Gibson GR, Cummings JH, Macfarlane GT (1991) Growth and activities of sulfate-reducing bacteria in gut contents of healthy-subjects and patients with ulcerative-colitis. FEMS Microbiol Ecol 86:103–111

    Article  CAS  Google Scholar 

  61. Gibson GR, Macfarlane S, Macfarlane GT (1993) Metabolic interactions involving sulfate-reducing and methanogenic bacteria in the human large-intestine. FEMS Microbiol Ecol 12:117–125

    Article  CAS  Google Scholar 

  62. Gill SR, Pop M, Deboy RT et al (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359

    Article  PubMed  CAS  Google Scholar 

  63. Goodwin AC, Destefano Shields CE, Wu S et al (2011) Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc Natl Acad Sci USA 108:15354–15359

    Article  PubMed  CAS  Google Scholar 

  64. Hague A, Elder DJ, Hicks DJ et al (1995) Apoptosis in colorectal tumour cells: induction by the short chain fatty acids butyrate, propionate and acetate and by the bile salt deoxycholate. Int J Cancer 60:400–406

    Article  PubMed  CAS  Google Scholar 

  65. Hayashi H, Sakamoto M, Benno Y (2002) Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. Microbiol Immunol 46:535–548

    PubMed  CAS  Google Scholar 

  66. Hebels DG, Sveje KM, de Kok MC et al (2011) N-nitroso compound exposure-associated transcriptomic profiles are indicative of an increased risk for colorectal cancer. Cancer Lett 309:1–10

    Article  PubMed  CAS  Google Scholar 

  67. Hebels DG, Sveje KM, de Kok MC et al (2012) Red meat intake-induced increases in fecal water genotoxicity correlate with pro-carcinogenic gene expression changes in the human colon. Food Chem Toxicol 50:95–103

    Article  PubMed  CAS  Google Scholar 

  68. Hirayama A, Kami K, Sugimoto M et al (2009) Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Res 69:4918–4925

    Article  PubMed  CAS  Google Scholar 

  69. Holst B, Williamson G (2004) A critical review of the bioavailability of glucosinolates and related compounds. Nat Prod Rep 21:425–447

    Article  PubMed  CAS  Google Scholar 

  70. Holst JJ, Deacon CF (2004) Glucagon-like peptide 1 and inhibitors of dipeptidyl peptidase IV in the treatment of type 2 diabetes mellitus. Curr Opin Pharmacol 4:589–596

    Article  PubMed  CAS  Google Scholar 

  71. Hristova KR, Mau M, Zheng D et al (2000) Desulfotomaculum genus- and subgenus-specific 16S rRNA hybridization probes for environmental studies. Environ Microbiol 2:143–159

    Article  PubMed  CAS  Google Scholar 

  72. Huang JQ, Sridhar S, Chen Y et al (1998) Meta-analysis of the relationship between Helicobacter pylori seropositivity and gastric cancer. Gastroenterology 114:1169–1179

    Article  PubMed  CAS  Google Scholar 

  73. Hughes R, Cross AJ, Pollock JR et al (2001) Dose-dependent effect of dietary meat on endogenous colonic N-nitrosation. Carcinogenesis 22:199–202

    Article  PubMed  CAS  Google Scholar 

  74. Hughes R, Pollock JR, Bingham S (2002) Effect of vegetables, tea, and soy on endogenous N-nitrosation, fecal ammonia, and fecal water genotoxicity during a high red meat diet in humans. Nutr Cancer 42:70–77

    Article  PubMed  Google Scholar 

  75. Huycke MM, Gaskins HR (2004) Commensal bacteria, redox stress, and colorectal cancer: mechanisms and models. Exp Biol Med (Maywood) 229:586–597

    CAS  Google Scholar 

  76. Ignatenko NA, Gerner EW, Besselsen DG (2011) Defining the role of polyamines in colon carcinogenesis using mouse models. J Carcinog 10:10

    Article  PubMed  Google Scholar 

  77. Järvenpää P (1990) In vitro metabolism of catechol estrogens by human fecal microflora. J Steroid Biochem 35:289–292

    Article  PubMed  Google Scholar 

  78. Järvenpää P, Kosunen T, Fotsis T et al (1980) In vitro metabolism of estrogens by isolated intestinal micro-organisms and by human faecal microflora. J Steroid Biochem 13:345–349

    Article  PubMed  Google Scholar 

  79. Joshi AD, Corral R, Siegmund KD et al (2009) Red meat and poultry intake, polymorphisms in the nucleotide excision repair and mismatch repair pathways and colorectal cancer risk. Carcinogenesis 30:472–479

    Article  PubMed  CAS  Google Scholar 

  80. Kanazawa K, Konishi F, Mitsuoka T et al (1996) Factors influencing the development of sigmoid colon cancer. Bacteriologic and biochemical studies. Cancer 77:1701–1706

    PubMed  CAS  Google Scholar 

  81. Kelly GE, Joannou GE, Reeder AY et al (1995) The variable metabolic response to dietary isoflavones in humans. Proc Soc Exp Biol Med 208:40–43

    Article  PubMed  CAS  Google Scholar 

  82. Key TJ (1999) Serum oestradiol and breast cancer risk. Endocr Relat Cancer 6:175–180

    Article  PubMed  CAS  Google Scholar 

  83. Kitahara M, Takamine F, Imamura T et al (2000) Assignment of Eubacterium sp. VPI 12708 and related strains with high bile acid 7alpha-dehydroxylating activity to Clostridium scindens and proposal of Clostridium hylemonae sp. nov., isolated from human faeces. Int J Syst Evol Microbiol 50(Pt 3):971–978

    Google Scholar 

  84. Knudtson LM, Hartman PA (1993) Comparison of fluorescent gentamicin-thallous-carbonate and KF streptococcal agars to enumerate enterococci and fecal streptococci in meats. Appl Environ Microbiol 59:936–938

    PubMed  CAS  Google Scholar 

  85. Kristal AR, Lampe JW (2002) Brassica vegetables and prostate cancer risk: a review of the epidemiological evidence. Nutr Cancer 42:1–9

    Article  PubMed  Google Scholar 

  86. Lampe JW (2008) The human microbiome project: getting to the guts of the matter in cancer epidemiology. Cancer Epidemiol Biomarkers Prev 17:2523–2524

    Article  PubMed  Google Scholar 

  87. Lampe J (2010) Emerging research on equol and cancer. J Nutr 140:1369S–1372S

    Article  PubMed  CAS  Google Scholar 

  88. Lampe JW, Karr SC, Hutchins AM et al (1998) Urinary equol excretion with a soy challenge: influence of habitual diet. Proc Soc Exp Biol Med 217:335–339

    Article  PubMed  CAS  Google Scholar 

  89. Laukaitis CM, Gerner EW (2011) DFMO: targeted risk reduction therapy for colorectal neoplasia. Best Pract Res Clin Gastroenterol 25:495–506

    Article  PubMed  CAS  Google Scholar 

  90. Lazcano-Ponce EC, Miquel JF, Munoz N et al (2001) Epidemiology and molecular pathology of gallbladder cancer. CA Cancer J Clin 51:349–364

    Article  PubMed  CAS  Google Scholar 

  91. Lee J, Michael AJ, Martynowski D et al (2007) Phylogenetic diversity and the structural basis of substrate specificity in the beta/alpha-barrel fold basic amino acid decarboxylases. J Biol Chem 282:27115–27125

    Article  PubMed  CAS  Google Scholar 

  92. Ley RE, Bäckhed F, Turnbaugh P et al (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102:11070–11075

    Article  PubMed  CAS  Google Scholar 

  93. Li F, Hullar MA, Beresford SA et al (2011) Variation of glucoraphanin metabolism in vivo and ex vivo by human gut bacteria. Br J Nutr 106:408–416

    Article  PubMed  CAS  Google Scholar 

  94. Lombardi P, Goldin B, Boutin E et al (1978) Metabolism of androgens and estrogens by human fecal microorganisms. J Steroid Biochem 9:795–801

    Article  PubMed  CAS  Google Scholar 

  95. Magee EA, Curno R, Edmond LM et al (2004) Contribution of dietary protein and inorganic sulfur to urinary sulfate: toward a biomarker of inorganic sulfur intake. Am J Clin Nutr 80:137–142

    PubMed  CAS  Google Scholar 

  96. Mager DL (2006) Bacteria and cancer: cause, coincidence or cure? A review. J Transl Med 4:14

    Article  PubMed  CAS  Google Scholar 

  97. Manco M, Putignani L, Bottazzo GF (2010) Gut microbiota, lipopolysaccharides, and innate immunity in the pathogenesis of obesity and cardiovascular risk. Endocr Rev 31:817–844

    Article  PubMed  CAS  Google Scholar 

  98. Maneval ML, Eckert KA (2004) Effects of oxidative and alkylating damage on microsatellite instability in nontumorigenic human cells. Mutat Res 546:29–38

    Article  PubMed  CAS  Google Scholar 

  99. Mann CJ (2003) Observational research methods. Research design II: cohort, cross sectional, and case-control studies. Emerg Med J 20:54–60

    Article  PubMed  CAS  Google Scholar 

  100. Marchesi JR, Dutilh BE, Hall N et al (2011) Towards the human colorectal cancer microbiome. PLoS ONE 6:e20447

    Article  PubMed  CAS  Google Scholar 

  101. Markiewicz L, Garey J, Adlercreutz H et al (1993) In vitro bioassays of non-steroidal phytoestrogens. J Steroid Biochem Mol Biol 45:399–405

    Article  PubMed  CAS  Google Scholar 

  102. Martin F, Peltonen J, Laatikainen T et al (1975) Excretion of progesterone metabolites and estriol in faeces from pregnant women during ampicillin administration. J Steroid Biochem 6:1339–1346

    Article  PubMed  CAS  Google Scholar 

  103. Massey RC, Key PE, Mallett AK et al (1988) An investigation of the endogenous formation of apparent total N-nitroso compounds in conventional microflora and germ-free rats. Food Chem Toxicol 26:595–600

    Article  PubMed  CAS  Google Scholar 

  104. McGarr SE, Ridlon JM, Hylemon PB (2005) Diet, anaerobic bacterial metabolism, and colon cancer: a review of the literature. J Clin Gastroenterol 39:98–109

    PubMed  Google Scholar 

  105. Meyskens FL Jr, Gerner EW (2011) Back to the future: mechanism-based, mutation-specific combination chemoprevention with a synthetic lethality approach. Cancer Prev Res (Phila) 4:628–632

    Article  Google Scholar 

  106. Mower HF, Ray RM, Shoff R et al (1979) Fecal bile acids in two Japanese populations with different colon cancer risks. Cancer Res 39:328–331

    PubMed  CAS  Google Scholar 

  107. Mudd DG, McKelvey ST, Norwood W et al (1980) Faecal bile acid concentration of patients with carcinoma or increased risk of carcinoma in the large bowel. Gut 21:587–590

    Article  PubMed  CAS  Google Scholar 

  108. Munro IC, Harwood M, Hlywka JJ et al (2003) Soy isoflavones: a safety review. Nutr Rev 61:1–33

    Article  PubMed  Google Scholar 

  109. Myzak MC, Hardin K, Yan M et al (2006) Sulforaphane inhibits HDAC activity in prostate cancer cells, retards growth of PC3 xenografts, and inhibits HDAC activity in vivo. FASEB J 20:A150–A150

    Google Scholar 

  110. Nagel SC, vom Saal FS, Welshons WV (1998) The effective free fraction of estradiol and xenoestrogens in human serum measured by whole cell uptake assays: physiology of delivery modifies estrogenic activity. Proc Soc Exp Biol Med 217:300–309

    Article  PubMed  CAS  Google Scholar 

  111. Navarro SL, Li F, Lampe JW (2011) Mechanisms of action of isothiocyanates in cancer chemoprevention: an update. Food Funct 2:579–587

    Article  PubMed  CAS  Google Scholar 

  112. Neidhardt FC, Magasanik B (1960) Studies on the role of ribonucleic acid in the growth of bacteria. Biochim Biophys Acta 42:99–116

    Article  PubMed  CAS  Google Scholar 

  113. Nettleton JA, Greany KA, Thomas W et al (2005) The effect of soy consumption on the urinary 2:16-hydroxyestrone ratio in postmenopausal women depends on equol production status but is not influenced by probiotic consumption. J Nutr 135:603–608

    PubMed  CAS  Google Scholar 

  114. Norat T, Bingham S, Ferrari P et al (2005) Meat, fish, and colorectal cancer risk: the European prospective investigation into cancer and nutrition. J Natl Cancer Inst 97:906–916

    Article  PubMed  Google Scholar 

  115. O’Keefe SJD, Carrim Y, van der Merwe CF et al (2004) Differences in diet and colonic bacterial metabolism that might account for the low risk of colon cancer in native Africans compared with Americans. J Nutr 134:3526S–3527S

    Google Scholar 

  116. Parkin DM (2006) The global health burden of infection-associated cancers in the year 2002. Int J Cancer 118:3030–3044

    Article  PubMed  CAS  Google Scholar 

  117. Pastor Rojo O, Lopez San Roman A, Albeniz Arbizu E et al (2007) Serum lipopolysaccharide-binding protein in endotoxemic patients with inflammatory bowel disease. Inflamm Bowel Dis 13:269–277

    Article  PubMed  Google Scholar 

  118. Pitcher MCL, Beatty ER, Gibson GR et al (1995) Sulfate-reducing bacteria—prevalence in active and inactive ulcerative-colitis. Gastroenterology 108:A894–A894

    Google Scholar 

  119. Qin J, Li R, Raes J et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65

    Article  PubMed  CAS  Google Scholar 

  120. Rimbach G, De Pascual-Teresa S, Ewins BA et al (2003) Antioxidant and free radical scavenging activity of isoflavone metabolites. Xenobiotica 33:913–925

    Article  PubMed  CAS  Google Scholar 

  121. Roediger WEW (1998) Decreased sulphur amino acid intake in ulcerative colitis. Lancet 351:1555

    Article  PubMed  CAS  Google Scholar 

  122. Roediger WEW, Moore J, Babidge W (1997) Colonic sulfide in pathogenesis and treatment of ulcerative colitis. Dig Dis Sci 42:1571–1579

    Article  PubMed  CAS  Google Scholar 

  123. Rooks MG, Garrett WS (2011) Bacteria, food, and cancer. F1000 Biol Rep 3:12

    Google Scholar 

  124. Rosset R, Julien J, Monier R (1966) Ribonucleic acid composition of bacteria as a function of growth rate. J Mol Biol 18:308–320

    Article  PubMed  CAS  Google Scholar 

  125. Rouzaud G, Rabot S, Ratcliffe B et al (2003) Influence of plant and bacterial myrosinase activity on the metabolic fate of glucosinolates in gnotobiotic rats. Br J Nutr 90:395–404

    Article  PubMed  CAS  Google Scholar 

  126. Rouzaud G, Young SA, Duncan AJ (2004) Hydrolysis of glucosinolates to isothiocyanates after ingestion of raw or microwaved cabbage by human volunteers. Cancer Epidemiol Biomarkers Prev 13:125–131

    Article  PubMed  CAS  Google Scholar 

  127. Rowland IR (1999) Toxicological implications of the normal microflora. In: Tannock GW (ed) Medical importance of the normal microflora. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  128. Samuel BS, Gordon JI (2006) A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. Proc Natl Acad Sci USA 103:10011–10016

    Article  PubMed  CAS  Google Scholar 

  129. Savage DC (1977) Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31:107–133

    Article  PubMed  CAS  Google Scholar 

  130. Scanlan PD, Shanahan F, Clune Y et al (2008) Culture-independent analysis of the gut microbiota in colorectal cancer and polyposis. Environ Microbiol 10:789–798

    Article  PubMed  CAS  Google Scholar 

  131. Schaechter M, Maalow O, Kjelgaard NO (1958) Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. J Gen Microbiol 19:592–606

    Article  PubMed  CAS  Google Scholar 

  132. Setchell KDR, Adlercreutz H (1988) Mammalian lignans and phyto-oestrogens: recent studies on their formation, metabolism and biological role in health and disease. In: Rowland I (ed) Role of the gut flora in toxicity and cancer. Academic Press, NY, pp 316–345

    Google Scholar 

  133. Setchell KD, Brown NM, Lydeking-Olsen E (2002) The clinical importance of the metabolite equol-a clue to the effectiveness of soy and its isoflavones. J Nutr 132:3577–3584

    PubMed  CAS  Google Scholar 

  134. Shapiro TA, Fahey JW, Wade KL et al (1998) Human metabolism and excretion of cancer chemoprotective glucosinolates and isothiocyanates of cruciferous vegetables. Cancer Epidemiol Biomarkers Prev 7:1091–1100

    PubMed  CAS  Google Scholar 

  135. Shimada Y, Yasuda S, Takahashi M et al (2010) Cloning and expression of a novel NADP(H)-dependent daidzein reductase, an enzyme involved in the metabolism of daidzein, from equol-producing Lactococcus strain 20–92. Appl Environ Microbiol 76:5892–5901

    Article  PubMed  CAS  Google Scholar 

  136. Silvester KR, Cummings JH (1995) Does digestibility of meat protein help explain large bowel cancer risk? Nutr Cancer 24:279–288

    Article  PubMed  CAS  Google Scholar 

  137. Soreide K (2008) Proteinase-activated receptor 2 (PAR-2) in gastrointestinal and pancreatic pathophysiology, inflammation and neoplasia. Scand J Gastroenterol 43:902–909

    Article  PubMed  CAS  Google Scholar 

  138. Spencer JPE, Crozier A (2012) Flavonoids and related compounds. CRC Press, Taylor & Francis Group, Boca Raton

    Google Scholar 

  139. Tannock GW (1999) The normal microflora: an introduction. In: Tannock GW (ed) Medical importance of the normal microfloraed. Kluwer Academic Publishers, Dordrecht, pp 1–23

    Google Scholar 

  140. Tannock GW, Munro K, Harmsen HJ et al (2000) Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20. Appl Environ Microbiol 66:2578–2588

    Article  PubMed  CAS  Google Scholar 

  141. Thomas LA, Veysey MJ, Bathgate T et al (2000) Mechanism for the transit-induced increase in colonic deoxycholic acid formation in cholesterol cholelithiasis. Gastroenterology 119:806–815

    Article  PubMed  CAS  Google Scholar 

  142. Turnbaugh PJ, Ley RE, Mahowald MA et al (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031

    Article  PubMed  Google Scholar 

  143. Turnbaugh PJ, Hamady M, Yatsunenko T et al (2009) A core gut microbiome in obese and lean twins. Nature 457:480–484

    Article  PubMed  CAS  Google Scholar 

  144. Turner R, Baron T, Wolffram S et al (2004) Effect of circulating forms of soy isoflavones on the oxidation of low density lipoprotein. Free Radic Res 38:209–216

    Article  PubMed  CAS  Google Scholar 

  145. Vedavanam K, Srijayanta S, O’Reilly J et al (1999) Antioxidant action and potential antidiabetic properties of an isoflavonoid-containing soyabean phytochemical extract (SPE). Phytother Res 13:601–608

    Article  PubMed  CAS  Google Scholar 

  146. Vermeulen M, Van den Berg R, Freidig AP et al (2006) Association between consumption of cruciferous vegetables and condiments and excretion in urine of isothiocyanate mercapturic acids. J Agric Food Chem 54:5350–5358

    Article  PubMed  CAS  Google Scholar 

  147. Wang XQ, Terry PD, Yan H (2009) Review of salt consumption and stomach cancer risk: epidemiological and biological evidence. World J Gastroenterol 15:2204–2213

    Article  PubMed  Google Scholar 

  148. Wells JE, Hylemon PB (2000) Identification and characterization of a bile acid 7alpha-dehydroxylation operon in Clostridium sp. strain TO-931, a highly active 7alpha-dehydroxylating strain isolated from human feces. Appl Environ Microbiol 66:1107–1113

    Article  PubMed  CAS  Google Scholar 

  149. Wells JE, Berr F, Thomas LA et al (2000) Isolation and characterization of cholic acid 7alpha-dehydroxylating fecal bacteria from cholesterol gallstone patients. J Hepatol 32:4–10

    Article  PubMed  CAS  Google Scholar 

  150. Wilson KH, Blitchington RB (1996) Human colonic biota studied by ribosomal DNA sequence analysis. Appl Environ Microbiol 62:2273–2278

    PubMed  CAS  Google Scholar 

  151. Winter J, Bokkenheuser VD (1987) Bacterial metabolism of natural and synthetic sex hormones undergoing enterohepatic circulation. J Steroid Biochem 27:1145–1149

    Article  PubMed  CAS  Google Scholar 

  152. World Cancer Research Fund (2007) Food, nutrition, physical activity, and the prevention of cancer: a global perspective. American Institute for Cancer Research, Washington, D.C

    Google Scholar 

  153. Zur Hausen H (2009) The search for infectious causes of human cancers: where and why. Virology 392:1–10

    Article  PubMed  CAS  Google Scholar 

  154. Zverlov V, Klein M, Lucker S et al (2005) Lateral gene transfer of dissimilatory (bi)sulfite reductase revisited. J Bacteriol 187:2203–2208

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna W. Lampe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hullar, M.A.J., Burnett-Hartman, A.N., Lampe, J.W. (2014). Gut Microbes, Diet, and Cancer. In: Zappia, V., Panico, S., Russo, G., Budillon, A., Della Ragione, F. (eds) Advances in Nutrition and Cancer. Cancer Treatment and Research, vol 159. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38007-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-38007-5_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-38006-8

  • Online ISBN: 978-3-642-38007-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics