Advertisement

Entity-Based Semantic Search on Conversational Transcripts Semantic

Search on Hansard
  • Obinna Onyimadu
  • Keiichi Nakata
  • Ying Wang
  • Tony Wilson
  • Kecheng Liu
Conference paper
  • 1k Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7774)

Abstract

This paper describes the implementation of a semantic web search engine on conversation styled transcripts. Our choice of data is Hansard, a publicly available conversation style transcript of parliamentary debates. The current search engine implementation on Hansard is limited to running search queries based on keywords or phrases hence lacks the ability to make semantic inferences from user queries. By making use of knowledge such as the relationship between members of parliament, constituencies, terms of office, as well as topics of debates the search results can be improved in terms of both relevance and coverage. Our contribution is not algorithmic instead we describe how we exploit a collection of external data sources, ontologies, semantic web vocabularies and named entity extraction in the analysis of underlying semantics of user queries as well as the semantic enrichment of the search index thereby improving the quality of results.

Keywords

Hansard Named Entities Semantic Search RDF 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Emmerich, W.W.: Distributed Component Technologies and their Software Engineering Implications. In: Proceedings of the 24th International Conference on Software Engineering, Orlando, Florida, pp. 537–546 (2002)Google Scholar
  2. 2.
    Junhui, Y., Chan, H.: Keywords Weights Improvement and Application of Information Extraction. In: Gaol, F.L., Nguyen, Q.V. (eds.) Proc. of the 2011 2nd International Congress on CACS. AISC, vol. 144, pp. 95–100. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  3. 3.
    Lam, M.I., Gong, Z., Muyeba, M.K.: A Method for Web Information Extraction. In: Zhang, Y., Yu, G., Bertino, E., Xu, G. (eds.) APWeb 2008. LNCS, vol. 4976, pp. 383–394. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Liu, Y., Scheuermann, P., Li, X., Zhu, X.: Using WordNet to Disambiguate Word Senses for Text Classification. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007, Part III. LNCS, vol. 4489, pp. 781–789. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Navigli, R.: Word Sense Disambiguation: A Survey. ACM Computing Surveys 41(2), Article No. 10 (February 2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Obinna Onyimadu
    • 1
    • 2
  • Keiichi Nakata
    • 1
  • Ying Wang
    • 1
    • 2
  • Tony Wilson
    • 2
  • Kecheng Liu
    • 1
  1. 1.Informatics Research Centre, Henley Business SchoolUniversity of ReadingUK
  2. 2.System Associates LtdMaidenheadUK

Personalised recommendations