DashSearch LD: Exploratory Search for Linked Data

  • Takayuki Goto
  • Hideaki Takeda
  • Masahiro Hamasaki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7774)


Although a large number of datasets gathered as Linked Open Data (LOD) is better for data sharing and re-using, the datasets themselves become more difficult to understand. Since each dataset has its own data structure, we need to understand datasets individually. In addition, since the entities in datasets are interconnected, we need to understand the interconnections between datasets. In other words, understanding the data is crucial for exploiting LOD. In this paper, we show a novel system called DashSearch LD to understand and use LOD with an exploratory search approach. The user interactively explores datasets by viewing and selecting entities in the datasets. Specifically, the user manipulates widgets on the screen by moving and overlapping them with a mouse to check entities, draw detail data on them, and obtain other entities linked by the widgets.


Linked Open Data SPARQL Exploratory Search Search Interface Facet Search Human-Computer Interaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Deligiannidis, L., Kochut, K.J., Sheth, A.P.: RDF data exploration and visualization. In: Proc. of CIMS 2007, pp. 39–46 (2007)Google Scholar
  2. 2.
    Goto, T., Takeda, H., Yasumura, M.: Dash Search: Desktop Widget based Desktop Search for Metadata Exploitation. In: Adjunct Proc. of UIST 2008, pp. 37–38 (2008)Google Scholar
  3. 3.
    Heim, P., Ertl, T., Ziegler, J.: Facet Graphs: Complex Semantic Querying Made Easy. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part I. LNCS, vol. 6088, pp. 288–302. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Jarrar, M., Dikaiakos, M.D.: A Query Formulation Language for the Data Web. IEEE Transactions on Knowledge and Data Engineering (2011)Google Scholar
  5. 5.
    Kamura, T., Takeda, H., Ohmukai, I., Kato, F., Takahashi, T., Ueda, H.: Study Support and Integration of Cultural Information Resources with Linked Data. In: Proc. of Culture and Computing 2011, pp. 177–178 (2011)Google Scholar
  6. 6.
    Kiefer, C., Bernstein, A., Stocker, M.: The Fundamentals of iSPARQL: A Virtual Triple Approach for Similarity-Based Semantic Web Tasks. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ISWC/ASWC 2007. LNCS, vol. 4825, pp. 295–309. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Phuoc, D.L., Polleres, A., Morbidoni, C., Hauswirth, M., Tummarello, G.: Rapid semantic web mashup development through semantic web pipes. In: WWW 2009 (2009)Google Scholar
  8. 8.
    Russell, A., Smart, P.R., Braines, D., Shadbolt, N.: NITELIGHT: A Graphical Tool for Semantic Query Construction. In: SWUI 2008 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Takayuki Goto
    • 1
  • Hideaki Takeda
    • 1
    • 2
  • Masahiro Hamasaki
    • 3
  1. 1.National Institute of InformaticsJapan
  2. 2.The Graduate University for Advanced StudiesJapan
  3. 3.National Institute of Advanced Industrial Science and Technology (AIST)Japan

Personalised recommendations