An Automated Template Selection Framework for Keyword Query over Linked Data

  • Md-Mizanur Rahoman
  • Ryutaro Ichise
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7774)


Template-based information access, in which templates are constructed for keywords, is a recent development of linked data information retrieval. However, most such approaches suffer from ineffective template management. Because linked data has a structured data representation, we assume the data’s inside statistics can effectively influence template management. In this work, we use this influence for template creation, template ranking, and scaling. Our proposal can effectively be used for automatic linked data information retrieval and can be incorporated with other techniques such as ontology inclusion and sophisticated matching to further improve performance.


linked data keyword information access data statistics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akar, Z., Halaç, T.G., Ekinci, E.E., Dikenelli, O.: Querying the Web of Interlinked Datasets using VOID Descriptions. In: Proceedings of WWW 2012 Workshop on Linked Data on the Web (2012)Google Scholar
  2. 2.
    Alexander, K., Cyganiak, R., Hausenblas, M., Zhao, J.: Describing Linked Datasets. In: Proceedings of WWW 2012 Workshop on Linked Data on the Web (2009)Google Scholar
  3. 3.
    Berners-Lee, T.: Linked Data - Design Issues (2006),
  4. 4.
    Bicer, V., Tran, T., Abecker, A., Nedkov, R.: KOIOS: Utilizing Semantic Search for Easy-Access and Visualization of Structured Environmental Data. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part II. LNCS, vol. 7032, pp. 1–16. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  5. 5.
    Cheng, G., Qu, Y.: Searching Linked Objects with Falcons: Approach, Implementation and Evaluation. International Journal on Semantic Web and Information Systems 5(3), 49–70 (2009)CrossRefGoogle Scholar
  6. 6.
    Ding, L., Finin, T.W., Joshi, A., Pan, R., Cost, R.S., Peng, Y., Reddivari, P., Doshi, V., Sachs, J.: Swoogle: A Search and Metadata Engine for the Semantic Web. In: Proceedings of the 13th ACM Conference on Information and Knowledge Management, pp. 652–659 (2004)Google Scholar
  7. 7.
    Ferré, S., Hermann, A.: Semantic Search: Reconciling Expressive Querying and Exploratory Search. In: Aroyo, L., Welty, C., Alani, H., Taylor, J., Bernstein, A., Kagal, L., Noy, N., Blomqvist, E. (eds.) ISWC 2011, Part I. LNCS, vol. 7031, pp. 177–192. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Han, L., Finin, T., Joshi, A.: GoRelations: An Intuitive Query System for DBpedia. In: Pan, J.Z., Chen, H., Kim, H.-G., Li, J., Wu, Z., Horrocks, I., Mizoguchi, R., Wu, Z. (eds.) JIST 2011. LNCS, vol. 7185, pp. 334–341. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Hartig, O., Bizer, C., Freytag, J.-C.: Executing SPARQL Queries over the Web of Linked Data. In: Bernstein, A., Karger, D.R., Heath, T., Feigenbaum, L., Maynard, D., Motta, E., Thirunarayan, K. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 293–309. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Herzig, D.M., Tran, T.: Heterogeneous Web Data Search using Relevance-Based on the Fly Data Integration. In: Proceedings of the 21st World Wide Web Conference, pp. 141–150 (2012)Google Scholar
  11. 11.
    Lehmann, J., Bühmann, L.: AutoSPARQL: Let Users Query Your Knowledge Base. In: Antoniou, G., Grobelnik, M., Simperl, E., Parsia, B., Plexousakis, D., De Leenheer, P., Pan, J. (eds.) ESWC 2011, Part I. LNCS, vol. 6643, pp. 63–79. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  12. 12.
    Manning, C.D., Raghavan, P., Schütze, H.: An Introduction to Information Retrieval. Cambridge University Press (2009)Google Scholar
  13. 13.
    Shekarpour, S., Auer, S., Ngomo, A.C.N., Gerber, D., Hellmann, S., Stadler, C.: Keyword-driven SPARQL Query Generation Leveraging Background Knowledge. In: Proceedings of the 10th International Conference on Web Intelligence, pp. 203–210 (2011)Google Scholar
  14. 14.
    Tran, T., Wang, H., Haase, P.: Hermes: Data Web Search on a Pay-As-You-Go Integration Infrastructure. Journal of Web Semantics 7(3), 189–203 (2009)CrossRefGoogle Scholar
  15. 15.
    Unger, C., Bühmann, L., Lehmann, J., Ngomo, A.C.N., Gerber, D., Cimiano, P.: Template-Based Question Answering over RDF Data. In: Proceedings of the 21st World Wide Web Conference, pp. 639–648 (2012)Google Scholar
  16. 16.
    Unger, C., Cimiano, P.: Pythia: Compositional Meaning Construction for Ontology-Based Question Answering on the Semantic Web. In: Muñoz, R., Montoyo, A., Métais, E. (eds.) NLDB 2011. LNCS, vol. 6716, pp. 153–160. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Vallet, D., Fernández, M., Castells, P.: An Ontology-Based Information Retrieval Model. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 455–470. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Wang, H., Liu, Q., Penin, T., Fu, L., Zhang, L., Tran, T., Yu, Y., Pan, Y.: Semplore: A Scalable IR Approach to Search the Web of Data. Journal of Web Semantics 7(3), 177–188 (2009)CrossRefGoogle Scholar
  19. 19.
    Zhou, Q., Wang, C., Xiong, M., Wang, H., Yu, Y.: SPARK: Adapting Keyword Query to Semantic Search. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ISWC/ASWC 2007. LNCS, vol. 4825, pp. 694–707. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Md-Mizanur Rahoman
    • 1
  • Ryutaro Ichise
    • 1
    • 2
  1. 1.Department of InformaticsThe Graduate University for Advanced StudiesTokyoJapan
  2. 2.Principles of Informatics Research DivisionNational Institute of InformaticsTokyoJapan

Personalised recommendations