Advertisement

The Dynamic Generation of Refining Categories in Ontology-Based Search

  • Yongjun Zhu
  • Dongkyu Jeon
  • Wooju Kim
  • June S. Hong
  • Myungjin Lee
  • Zhuguang Wen
  • Yanhua Cai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7774)

Abstract

In the era of information revolution, the amount of digital contents is growing explosively with the advent of personal smart devices. The consumption of the digital contents makes users depend heavily on search engines to search what they want. Search requires tedious review of search results from users currently, and so alleviates it; predefined and fixed categories are provided to refine results. Since fixed categories never reflect the difference of queries and search results, they often contain insensible information. This paper proposes a method for the dynamic generation of refining categories under the ontology-based semantic search systems. It specifically suggests a measure for dynamic selection of categories and an algorithm to arrange them in an appropriate order. Finally, it proves the validity of the proposed approach by using some evaluative measures.

Keywords

Ontology Dynamic Classification Categorization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hilbert, M., Lopez, P.: The world’s technological capacity to store, communicate, and compute information. Science 332(60), 60–65 (2011)CrossRefGoogle Scholar
  2. 2.
    Gruber, T.R.: A translation approach to portable ontology specifications. Knowledge Acquisition 5(2), 199–200 (1993)CrossRefGoogle Scholar
  3. 3.
    Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE Mobile Computing and Communications Review 5(1), 3–55 (2001)CrossRefGoogle Scholar
  4. 4.
    Gray, R.M.: Entropy and Information Theory. Springer (2011)Google Scholar
  5. 5.
    Kullback, S., Leibler, R.A.: On information and sufficiency. Annals of Mathematical Statistics 22(1), 76–86 (1951)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Park, S., Park, S.-H., Lee, J.-H., Lee, J.-S.: E-mail classification agent using category generation and dynamic category hierarchy. In: Kim, T.G. (ed.) AIS 2004. LNCS (LNAI), vol. 3397, pp. 207–214. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Khoshnevisan, C.: Dynamic selection and ordering of search categories based on relevancy information, Technical Report US 7698261B1, U.S. Patent (2010)Google Scholar
  8. 8.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley & Sons (2001)Google Scholar
  9. 9.
  10. 10.
    Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley (1999)Google Scholar
  11. 11.
    Hyndman, R.J., Koehler, A.B.: Another look at measures of forecast accuracy. International Journal of Forecasting 22(4), 679–688 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yongjun Zhu
    • 1
  • Dongkyu Jeon
    • 1
  • Wooju Kim
    • 1
  • June S. Hong
    • 2
  • Myungjin Lee
    • 1
  • Zhuguang Wen
    • 1
  • Yanhua Cai
    • 1
  1. 1.Dept. of Information and Industrial EngineeringYonsei UniversitySeoulKorea
  2. 2.Division of Business AdministrationKyonggi UniversityKyonggiKorea

Personalised recommendations