Skip to main content

Pathogenese und Pathophysiologie der akuten Pankreatitis

  • Chapter
  • First Online:
Erkrankungen des Pankreas

Zusammenfassung

Die Pankreatitis ist eine primär sterile Entzündung des Pankreas, deren Ursprung in einer vorzeitigen intrazellulären Proteaseaktivierung liegt. Eine wichtige Rolle nimmt hierbei die Serinprotease Trypsin ein. Die pathologische intrazelluläre Proteaseaktivierung führt zu einer ausgedehnten Zellschädigung. Ausgelöst durch den lokalen Zellschaden kommt es zu einer systemischen Immunantwort. Die lokale Immunantwort unterstützt den lokalen pankreatischen Schaden und führt zu einer weiter gesteigerten Aktivierung von Proteasen. Auf der anderen Seite kann die systemische Immunantwort zu einem Multiorganversagen, verbunden mit einer erhöhten Mortalität, führen. Sowohl die lokale als auch die systemische Immunantwort definieren letztendlich den Schweregrad der Erkrankung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • van Acker GJ, Perides G et al (2006) Co-localization hypothesis: a mechanism for the intrapancreatic activation of digestive enzymes during the early phases of acute pancreatitis. World J Gastroenterol 12(13): 1985–1990

    PubMed  CAS  Google Scholar 

  • Algul H, Tando Y et al (2002) Acute experimental pancreatitis and NF-kappaB/Rel activation. Pancreatology 2(6): 503–509

    Article  PubMed  Google Scholar 

  • Arias AE, Boldicke T et al (1993) Absence of trypsinogen autoactivation and immunolocalization of pancreatic secretory trypsin inhibitor in acinar cells in vitro. In Vitro Cell Dev Biol 29A(3 Pt 1): 221–227

    Article  PubMed  CAS  Google Scholar 

  • Ashby MC, Tepikin AV (2002) Polarized calcium and calmodulin signaling in secretory epithelia. Physiol Rev 82(3): 701–734

    PubMed  CAS  Google Scholar 

  • Behrendorff N, Floetenmeyer M et al (2010) Protons released during pancreatic acinar cell secretion acidify the lumen and contribute to pancreatitis in mice. Gastroenterology 139(5): 1711–1720, 1720e1–5

    Article  PubMed  CAS  Google Scholar 

  • Bhatia M, Brady M et al (2000) Inflammatory mediators in acute pancreatitis. J Pathol 190(2): 117–125

    Article  PubMed  CAS  Google Scholar 

  • Brown WJ, Farquhar MG (1984) Accumulation of coated vesicles bearing mannose 6-phosphate receptors for lysosomal enzymes in the Golgi region of I-cell fibroblasts. Proc Natl Acad Sci USA 81(16): 5135–5139

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Ji B et al (2002) NF-kappaB activation in pancreas induces pancreatic and systemic inflammatory response. Gastroenterology 122(2): 448–457

    Article  PubMed  CAS  Google Scholar 

  • Dawra R, Sah RP et al (2011) Intra-acinar trypsinogen activation mediates early stages of pancreatic injury but not inflammation in mice with acute pancreatitis. Gastroenterology 141(6): 2210–2217 e2

    Article  PubMed  CAS  Google Scholar 

  • Demols A, Le Moine O et al (2000) CD4(+) T cells play an important role in acute experimental pancreatitis in mice. Gastroenterology 118(3): 582–590

    Article  PubMed  CAS  Google Scholar 

  • Grady T, Mah‘Moud M et al (1998) Zymogen proteolysis within the pancreatic acinar cell is associated with cellular injury. Am J Physiol 275(5 Pt 1): G1010–1017

    PubMed  CAS  Google Scholar 

  • Greenbaum LM, Hirshkowitz A et al (1959) The activation of trypsinogen by cathepsin B. J Biol Chem 234: 2885–2890

    PubMed  CAS  Google Scholar 

  • Gukovskaya AS, Vaquero E et al (2002) Neutrophils and NADPH oxidase mediate intrapancreatic trypsin activation in murine experimental acute pancreatitis. Gastroenterology 122(4): 974–984

    Article  PubMed  CAS  Google Scholar 

  • Gukovskaya AS, Gukovsky I et al (1997) Pancreatic acinar cells produce, release, and respond to tumor necrosis factor-alpha. Role in regulating cell death and pancreatitis. J Clin Invest 100(7): 1853–1862

    Article  PubMed  CAS  Google Scholar 

  • Gukovsky I, Gukovskaya AS et al (1998) Early NF-kappaB activation is associated with hormone-induced pancreatitis. Am J Physiol 275(6 Pt 1): G1402–1414

    PubMed  CAS  Google Scholar 

  • Gunjaca I, Zunic J et al (2012) Circulating cytokine levels in acute pancreatitis-model of SIRS/CARS can help in the clinical assessment of disease severity. Inflammation 35(2): 758–763

    Article  PubMed  CAS  Google Scholar 

  • Halangk W, Sturzebecher J et al (1997) Trypsinogen activation in rat pancreatic acinar cells hyperstimulated by caerulein. Biochim Biophys Acta 1362(2–3): 243–251

    PubMed  CAS  Google Scholar 

  • Halangk W, Lerch MM et al (2000) Role of cathepsin B in intracellular trypsinogen activation and the onset of acute pancreatitis. J Clin Invest 106(6): 773–781

    Article  PubMed  CAS  Google Scholar 

  • Hirano T, Saluja A et al (1991) Apical secretion of lysosomal enzymes in rabbit pancreas occurs via a secretagogue regulated pathway and is increased after pancreatic duct obstruction. J Clin Invest 87(3): 865–869

    Article  PubMed  CAS  Google Scholar 

  • Hofbauer B, Saluja AK et al (1998) Intra-acinar cell activation of trypsinogen during caerulein-induced pancreatitis in rats. Am J Physiol 275(2 Pt 1): G352–362

    PubMed  CAS  Google Scholar 

  • Kasai H, Augustine GJ (1990) Cytosolic Ca2+ gradients triggering unidirectional fluid secretion from exocrine pancreas. Nature 348(6303): 735–738

    Article  PubMed  CAS  Google Scholar 

  • Kereszturi E, Kiraly O et al (2009) Minigene analysis of intronic variants in common SPINK1 haplotypes associated with chronic pancreatitis. Gut 58(4): 545–549

    Article  PubMed  CAS  Google Scholar 

  • Koike H, Steer ML et al (1982) Pancreatic effects of ethionine: blockade of exocytosis and appearance of crinophagy and autophagy precede cellular necrosis. Am J Physiol 242(4): G297–307

    PubMed  CAS  Google Scholar 

  • Kruger B, Albrecht E et al (2000) The role of intracellular calcium signaling in premature protease activation and the onset of pancreatitis. Am J Pathol 157(1): 43–50

    Article  PubMed  CAS  Google Scholar 

  • Kukor Z, Mayerle J et al (2002) Presence of cathepsin B in the human pancreatic secretory pathway and its role in trypsinogen activation during hereditary pancreatitis. J Biol Chem 277(24): 21389–21396

    Article  PubMed  CAS  Google Scholar 

  • Lee MG, Xu X et al (1997) Polarized expression of Ca2+ pumps in pancreatic and salivary gland cells. Role in initiation and propagation of [Ca2+]i waves. J Biol Chem 272(25): 15771–15776

    Article  PubMed  CAS  Google Scholar 

  • Lerch MM, Saluja AK et al (1992) Acute necrotizing pancreatitis in the opossum: earliest morphological changes involve acinar cells. Gastroenterology 103(1): 205–213

    PubMed  CAS  Google Scholar 

  • Maroux S, Baratti J et al (1971) Purification and specificity of porcine enterokinase. J Biol Chem 246(16): 5031–5039

    PubMed  CAS  Google Scholar 

  • Marrache F, Tu SP et al (2008) Overexpression of interleukin-1beta in the murine pancreas results in chronic pancreatitis. Gastroenterology 135(4): 1277–1287

    Article  PubMed  CAS  Google Scholar 

  • Maruyama Y, Petersen OH (1994) Delay in granular fusion evoked by repetitive cytosolic Ca2+ spikes in mouse pancreatic acinar cells. Cell Calcium 16(5): 419–430

    Article  PubMed  CAS  Google Scholar 

  • Mayerle J, Schnekenburger J et al (2005) Extracellular cleavage of E-cadherin by leukocyte elastase during acute experimental pancreatitis in rats. Gastroenterology 129(4): 1251–1267

    Article  PubMed  CAS  Google Scholar 

  • Mayerle J, Sendler M et al (2011) Breaking down haem attenuates acute pancreatitis: a new treatment option? Gut 60(5): 569–570

    Article  PubMed  Google Scholar 

  • Niederau C, Grendell JH (1988) Intracellular vacuoles in experimental acute pancreatitis in rats and mice are an acidified compartment. J Clin Invest 81(1): 229–236

    Article  PubMed  CAS  Google Scholar 

  • Park MK, Ashby MC et al (2001) Perinuclear, perigranular and sub-plasmalemmal mitochondria have distinct functions in the regulation of cellular calcium transport. EMBO J 20(8): 1863–1874

    Article  PubMed  CAS  Google Scholar 

  • Pastor CM, Vonlaufen A et al (2006) Neutrophil depletion – but not prevention of Kupffer cell activation – decreases the severity of cerulein-induced acute pancreatitis. World J Gastroenterol 12(8): 1219–1224

    PubMed  CAS  Google Scholar 

  • Perides G, Weiss ER et al (2011) TNF-alpha-dependent regulation of acute pancreatitis severity by Ly-6C(hi) monocytes in mice. J Biol Chem 286(15): 13327–13335

    Article  PubMed  CAS  Google Scholar 

  • Petersen OH (2005) Ca2+ signalling and Ca2+-activated ion channels in exocrine acinar cells. Cell Calcium 38(3–4): 171–200

    Article  PubMed  CAS  Google Scholar 

  • Petersen OH, Sutton R et al (2006) Failure of calcium microdomain generation and pathological consequences. Cell Calcium 40(5–6): 593–600

    Article  PubMed  CAS  Google Scholar 

  • Poch B, Gansauge F et al (1999) The role of polymorphonuclear leukocytes and oxygen-derived free radicals in experimental acute pancreatitis: mediators of local destruction and activators of inflammation. FEBS Lett 461(3): 268–272

    Article  PubMed  CAS  Google Scholar 

  • Rakonczay Z Jr, Hegyi P et al (2008) The role of NF-kappaB activation in the pathogenesis of acute pancreatitis. Gut 57(2): 259–267

    Article  PubMed  CAS  Google Scholar 

  • Rinderknecht H (1988) Fatal pancreatitis, a consequence of excessive leukocyte stimulation? Int J Pancreatol 3(2–3): 105–112

    PubMed  CAS  Google Scholar 

  • Rinderknecht H, Renner IG et al (1979) Lysosomal enzymes in pure pancreatic juice from normal healthy volunteers and chronic alcoholics. Dig Dis Sci 24(3): 180–186

    Article  PubMed  CAS  Google Scholar 

  • Rosendahl J, Witt H et al (2008) Chymotrypsin C (CTRC) variants that diminish activity or secretion are associated with chronic pancreatitis. Nat Genet 40(1): 78–82

    Article  PubMed  CAS  Google Scholar 

  • Sahin-Toth M (2005) Human mesotrypsin defies natural trypsin inhibitors: from passive resistance to active destruction. Protein Pept Lett 12(5): 457–464

    Article  PubMed  CAS  Google Scholar 

  • Salameh MA, Soares AS et al (2008) Structural basis for accelerated cleavage of bovine pancreatic trypsin inhibitor (BPTI) by human mesotrypsin. J Biol Chem 283(7): 4115–4123

    Article  PubMed  CAS  Google Scholar 

  • Saluja AK, Bhagat L et al (1999) Secretagogue-induced digestive enzyme activation and cell injury in rat pancreatic acini. Am J Physiol 276(4 Pt 1): G835–842

    Google Scholar 

  • Saluja AK, Donovan EA et al (1997) Cerulein-induced in vitro activation of trypsinogen in rat pancreatic acini is mediated by cathepsin B. Gastroenterology 113(1): 304–310

    Article  PubMed  CAS  Google Scholar 

  • Saluja A, Hashimoto S et al (1987) Subcellular redistribution of lysosomal enzymes during caerulein-induced pancreatitis. Am J Physiol 253(4 Pt 1): G508–516

    PubMed  CAS  Google Scholar 

  • Sandoval D, Gukovskaya A et al (1996) The role of neutrophils and platelet-activating factor in mediating experimental pancreatitis. Gastroenterology 111(4): 1081–1091

    Article  PubMed  CAS  Google Scholar 

  • Satoh A, Shimosegawa T et al (1999) Inhibition of nuclear factor-kappaB activation improves the survival of rats with taurocholate pancreatitis. Gut 44(2): 253–258

    Article  PubMed  CAS  Google Scholar 

  • Sendler M, Dummer A et al (2013) Tumour necrosis factor alpha secretion induces protease activation and acinar cell necrosis in acute experimental pancreatitis in mice. Gut 62(3): 430–439

    Article  PubMed  CAS  Google Scholar 

  • Steinle AU, Weidenbach H et al (1999) NF-kappaB/Rel activation in cerulein pancreatitis. Gastroenterology 116(2): 420–430

    Article  PubMed  CAS  Google Scholar 

  • Szabo A, Sahin-Toth M (2012) Increased activation of hereditary pancreatitis-associated human cationic trypsinogen mutants in presence of chymotrypsin C. J Biol Chem 287(24): 20701–20710

    Article  PubMed  CAS  Google Scholar 

  • Szmola R, Kukor Z et al (2003) Human mesotrypsin is a unique digestive protease specialized for the degradation of trypsin inhibitors. J Biol Chem 278(49): 48580–48589

    Article  PubMed  CAS  Google Scholar 

  • Teich N, Ockenga J et al (2000) Chronic pancreatitis associated with an activation peptide mutation that facilitates trypsin activation. Gastroenterology 119(2): 461–465

    Article  PubMed  CAS  Google Scholar 

  • Teich N, Rosendahl J et al (2006) Mutations of human cationic trypsinogen (PRSS1) and chronic pancreatitis. Hum Mutat 27(8): 721–730

    Article  PubMed  CAS  Google Scholar 

  • Thorn P, Lawrie AM et al (1993) Ca2+ oscillations in pancreatic acinar cells: spatiotemporal relationships and functional implications. Cell Calcium 14(10): 746–757

    Article  PubMed  CAS  Google Scholar 

  • Threadgold J, Greenhalf W et al (2002) The N34S mutation of SPINK1 (PSTI) is associated with a familial pattern of idiopathic chronic pancreatitis but does not cause the disease. Gut 50(5): 675–681

    Article  PubMed  CAS  Google Scholar 

  • Voronina S, Sukhomlin T et al (2002) Correlation of NADH and Ca2+ signals in mouse pancreatic acinar cells. J Physiol 539(Pt 1): 41–52

    Article  PubMed  CAS  Google Scholar 

  • Ward JB, Petersen OH et al (1995) Is an elevated concentration of acinar cytosolic free ionised calcium the trigger for acute pancreatitis? Lancet 346(8981): 1016–1019

    Article  PubMed  CAS  Google Scholar 

  • Wartmann T, Mayerle J et al (2010) Cathepsin L inactivates human trypsinogen, whereas cathepsin L-deletion reduces the severity of pancreatitis in mice. Gastroenterology 138(2): 726–737

    Article  PubMed  CAS  Google Scholar 

  • Watanabe O, Baccino FM et al (1984) Supramaximal caerulein stimulation and ultrastructure of rat pancreatic acinar cell: early morphological changes during development of experimental pancreatitis. Am J Physiol 246(4 Pt 1): G457–467

    PubMed  CAS  Google Scholar 

  • Whitcomb DC, Gorry MC et al (1996) Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene. Nat Genet 14(2): 141–145

    Article  PubMed  CAS  Google Scholar 

  • Witt H, Sahin-Toth M et al (2006) A degradation-sensitive anionic trypsinogen (PRSS2) variant protects against chronic pancreatitis. Nat Genet 38(6): 668–673

    Article  PubMed  CAS  Google Scholar 

  • Witt H, Luck W et al (1999) A signal peptide cleavage site mutation in the cationic trypsinogen gene is strongly associated with chronic pancreatitis. Gastroenterology 117(1): 7–10

    Article  PubMed  CAS  Google Scholar 

  • Witt H, Luck W et al (2000) Mutations in the gene encoding the serine protease inhibitor, Kazal type 1 are associated with chronic pancreatitis. Nat Genet 25(2): 213–216

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki M, Thomas JM et al (2005) Role of NAADP and cADPR in the induction and maintenance of agonist-evoked Ca2+ spiking in mouse pancreatic acinar cells. Curr Biol 15(9): 874–878

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Sendler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sendler, M., Mayerle, J., Lerch, M. (2013). Pathogenese und Pathophysiologie der akuten Pankreatitis. In: Beger, H., et al. Erkrankungen des Pankreas. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37964-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37964-2_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37963-5

  • Online ISBN: 978-3-642-37964-2

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics