Skip to main content

Microstrip Patch Antenna Miniaturization Using Planar Metamaterial Unit Cell

  • Conference paper
Quality, Reliability, Security and Robustness in Heterogeneous Networks (QShine 2013)

Abstract

A Microstrip patch antenna using planar metamaterial unit cell is designed, simulated and analyzed. The metamaterial unit cell is consisting of an interdigital capacitor and a complementary split-ring resonator (CSRR) slot. The antenna is tuned to work efficiently in the frequency range from 3 GHz – 5GHz depending on the geometric specifications of antenna and interdigital finger length. Proposed antenna provides good return loss behavior. The VSWR obtained in this band is very much near to 1. It covers many applications including mobile communication. This Antenna is compared with the conventional patch antenna, which shows the significant miniaturization as compared to conventional patch antenna.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Veselago, V.G.: The electrodynamics of materials with simultane-ously negative values of and. Soviet Phys. 10(4), 509–514 (1968)

    Article  Google Scholar 

  2. Antoniades, M., Eleftheriades, G.V.: A folded-monopole model for electrically small NRI-TL metamaterial antennas. IEEE Antennas Wireless Propag. Lett. 7, 425–428 (2008)

    Article  Google Scholar 

  3. Caloz, C., Itoh, T.: Application of the transmission line theory of left-handed (LH) materials to the realization of a microstrip “LH line”. In: Proc. IEEE Antennas Propag. Society Int. Symp. (AP-S), San Antonio, TX, June 16-21, pp. 412–415 (2002)

    Google Scholar 

  4. Dong, Y., Itoh, T.: Metamaterial-inspired broadband mushroom antenna. In: Int. Symp. AP-S Digest, Toronto, ON, pp. 1–4 (July 2010)

    Google Scholar 

  5. Ziolkowski, R.W., Erentok, A.: Metamaterial-based efficient electrically small antennas. IEEE Trans. Antennas Propag. 54(7), 2113–2130 (2006)

    Article  Google Scholar 

  6. Ha, J., Kwon, K., Lee, Y., Choi, J.: Hybrid Mode Wideband Patch Antenna Loaded With a Planar Metamaterial Unit Cell. IEEE Trans. Antennas Propag. 60(2), 1143–1147 (2012)

    Article  Google Scholar 

  7. Dong, Y., Toyao, H., Itoh, T.: Compact Circularly-Polarized Patch Antenna Loaded With Metamaterial Structures. IEEE Trans. Antennas Propag. 59(11), 4329–4333 (2011)

    Article  Google Scholar 

  8. Mosallaei, H., Sarabandi, K.: Antenna Miniaturization and Bandwidth Enhancement Using a Reactive Impedance Substrate. IEEE Trans. Antennas Propag. 2, 2403–2414 (2004)

    Article  Google Scholar 

  9. Ziolkowski, R.W.: Design, fabrication, and testing of double negative metamaterials. IEEE Trans. Antennas Propagat. 51(7), 1516–1529 (2003)

    Article  MathSciNet  Google Scholar 

  10. Caloz, C., Itoh, T.: Electromagnetic metamaterials: Transmission line theory and microwave applications. John Wiley & Sons (2009)

    Google Scholar 

  11. Singh, I., Tripathi, V.S.: Microstrip Patch Antenna and Its Applications: A Survey. Published in International Journal of Computer Technology and Applications 2(5), 1595–1599 (2011)

    Google Scholar 

  12. Marques, R., Martin, F., Sorolla, M.: Metamaterials With Negative Parameters: Theory, Design and Microwave Applications. Wiley, New York (2008)

    Google Scholar 

  13. Stuart, H.R., Pidwerbetsky, A.: Electrically small antenna ele-ments using negative permittivity resonators. IEEE Trans. Antennas Propag. 54(6), 1644–1653 (2006)

    Article  Google Scholar 

  14. Ziolkowski, R.W., Erentok, A.: Metamaterial-based efficient electrically small antennas. IEEE Trans. Antennas Propag. 54(7), 2113–2130 (2006)

    Google Scholar 

  15. Lee, C., Leong, K.M., Itoh, T.: Composite right/left-handed trans-mission line based compact resonant antennas for RF module integration. IEEE Trans. Antennas Propag. 54(8), 2283–2291 (2006)

    Article  Google Scholar 

  16. Alu, A., Bilotti, F., Engheta, N., Vegni, L.: Subwavelength, compact, resonant patch antennas loaded with metamaterials. IEEE Trans. An-tennas Propag. 55(1), 13–25 (2007)

    Article  Google Scholar 

  17. Park, J.H., Ryu, Y.H., Lee, J.G., Lee, J.H.: Epsilon negative zeroth-order resonator antenna. IEEE Trans. Antennas Propag. 55(12), 3710–3712 (2007)

    Article  Google Scholar 

  18. Antoniades, M., Eleftheriades, G.V.: A folded-monopole model for electrically small NRI-TL metamaterial antennas. IEEE Antennas Wireless Propag. Lett. 7, 425–428 (2008)

    Article  Google Scholar 

  19. Dong, Y., Itoh, T.: Miniaturizedsubstrate integrated waveguide slot antennas based on negative order resonance. IEEE Trans. Antennas Propag. 58(12) (2010)

    Google Scholar 

  20. Kokkinos, T., Sarris, C.D., Eleftheriades, G.V.: Periodic FDTD analysis of leaky-wave structuresand applications to the analysis of negative-refractive-index leaky-wave antennas. IEEE Trans. Microw. Theory Tech. 54(4), 1619–1630 (2006)

    Article  Google Scholar 

  21. Ueda, T., Michishita, N., Akiyama, M., Itoh, T.: Dielectric resonator based composite right/left-handed transmission lines and their applica-tion to leaky wave antenna. IEEE Trans. Microw. Theory Tech. 56(10), 2259–2268 (2008)

    Article  Google Scholar 

  22. Paulotto, S., Baccarelli, P., Frezza, F., Jackson, D.: Full-wave modaldispersion analysis and broadside optimization for a class of microstrip CRLH leaky-wave antennas. IEEE Trans. Microw. Theory Tech. 56(12), 2826–2837 (2008)

    Article  Google Scholar 

  23. Kodera, T., Caloz, C.: Uniform ferrite-loaded open waveguide structure with CRLH response and its application to a novel back-fire-to-endfire leaky-wave antenna. IEEE Trans. Microw. Theory Tech. 57(4), 784–795 (2009)

    Article  Google Scholar 

  24. Dong, Y., Itoh, T.: Composite right/left-handed substrate integrated waveguide and half mode substrate integrated waveguide leaky-wave structures. IEEE Trans. Antennas Propag. 59(3), 767–775 (2011)

    Article  Google Scholar 

  25. Pendry, J.B., Holden, A.J., Robbins, D.J., Stewart, W.J.: Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999)

    Article  Google Scholar 

  26. Falcone, F., Lopetegi, T., Baena, J.D., Marques, R., Martin, F., Sorolla, M.: Effective negative-epsilon stopband microstrip lines based on complementary split ring resonators. IEEE Microw. Wireless Compon. Lett. 14(14), 280–282 (2004)

    Article  Google Scholar 

  27. Bonache, J., Gil, I., Garcia, J., Martin, F.: Complementary split ring resonators for microstrip diplexer design. Electron. Lett. 41(14) (July 2005)

    Google Scholar 

  28. Niu, J., Zhou, X.: A novel dual-band branch line coupler based on strip-shaped complementary split ring resonators. Microw. Opt. Technol. Lett. 49(11), 2859–2862 (2007)

    Article  Google Scholar 

  29. Zhang, Y., Hong, W., Yu, C., Kuai, Z., Dong, Y., Zhou, J.: Planar ultrawideband antennas with multiple notched bands based on etched slots on the patch and/or split ring resonators on the feed Line. IEEE Trans. Antennas Propag. 56(9), 3063–3068 (2008)

    Article  Google Scholar 

  30. Zhang, H., Li, Y.Q., Chen, X., Fu, Y.Q., Yuan, N.C.: Design of circular polarization microstrip patch antennas with complementary split ring resonator. IET Microw. Antennas Propag. 3(8), 1186–1190 (2009)

    Article  Google Scholar 

  31. Dong, Y., Yang, T., Itoh, T.: Substrate integrated waveguide loaded by complementary split-ring resonators and its applications to minia-turized waveguidefilters. IEEE Trans. Microw. Theory Tech. 57(9), 2211–2223 (2009)

    Article  Google Scholar 

  32. Eggermont, S., Platteborze, R., Huynen, I.: Investigation of meta-material leaky wave antenna based on complementary split ring resonators. In: Proc. Eur. Microw. Conf., Rome, Italy, pp. 209–212 (September 2009)

    Google Scholar 

  33. Zhang, H., Li, Y.Q., Chen, X., Fu, Y.Q., Yuan, N.C.: Design of circular/dual-frequency linear polarization antennas based on the anisotropic complementary split ring resonator. IEEE Trans. Antennas Propag. 57(10), 3352–3355 (2009)

    Article  Google Scholar 

  34. Ansoft HFSS, Ansoft Corporation, http://www.ansoft.co.jp/hfss.htm

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Singh, I., Jain, S., Tripathi, V.S., Tiwari, S. (2013). Microstrip Patch Antenna Miniaturization Using Planar Metamaterial Unit Cell. In: Singh, K., Awasthi, A.K. (eds) Quality, Reliability, Security and Robustness in Heterogeneous Networks. QShine 2013. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 115. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37949-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37949-9_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37948-2

  • Online ISBN: 978-3-642-37949-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics