Skip to main content

Optimization of the Electroporation Conditions for DNA Transformation of Staphylococcus carnosus

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 251))

Abstract

In this paper, the optimization of electroporation method for Staphylococcus carnosus is investigated. The various factors for electrotransformation are evaluated, including bacterial growth phase, electroporation parameters, pBT2 plasmid DNA concentration and structure, the effect of protoplast or other cell wall-weakening treatments, and the prepulse incubation temperatures, etc. The primary optimized electroporation method is consisted of 60 μL electrocompetent cells and 800–1,000 ng plasmid DNA using the electroporation parameters of 21 kV cm−1 field strength, 50 Ω resistance, and 25 μF capacitance by a Bio-Rad Gene Pulser Xcell™ system. Using this optimized method, three different plasmids (pBT2, pCX19, and pTX15) are successfully transformed into S. carnosus, and the transformation efficiencies are stationary at around 1 × 103 transformants per μg plasmid DNA. Our results indicate that this electroporation method can be generally applied for foreign DNA transformation into S. carnosus host.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Schleifer KH, Fischer U (1982) Description of a new species of the genus Staphylococcus: Staphylococcus carnosus. Int Syst Bacteriol 32:153–156

    Article  CAS  Google Scholar 

  2. Augustin J, Götz F (1990) Transformation of Staphylococcus epidermidis and other staphylococcal species with plasmid DNA by electroporation. FEMS Microbiol Lett 54:203–207

    Article  CAS  Google Scholar 

  3. Schenk S, Laddaga RA (1992) Improved method for electroporation of Staphylococcus aureus. FEMS Microbiol Lett 73:133–138

    Article  CAS  Google Scholar 

  4. Löfblom J, Kronqvist N, Uhlén M et al (2006) Optimization of electroporation mediated transformation: Staphylococcus carnosus as model organism. J Appl Microbiol 102:736–747

    Article  Google Scholar 

  5. Chang S, Cohen SN (1979) High frequency transformation of Bacillus subtilis protoplasts by plasmid DNA. Mol Genet Genomics 168:111–115

    Article  CAS  Google Scholar 

  6. Götz F, Schumacher B (1987) Improvements of protoplast transformation in Staphylococcus carnosus. FEMS Microbiol Lett 40:285–288

    Article  Google Scholar 

  7. Scott PT, Rood JI (1989) Electroporation-mediated transformation of lysostaphin-treated Clostridium perfringens. Gene 82:327–333

    Article  CAS  Google Scholar 

  8. Rattanachaikunsopon P, Phumkhachorn P (2009) Glass bead transformation method for Gram-positive bacteria. Braz J Microbiol 40:923–926

    Article  Google Scholar 

  9. Conley EC, Saunders JR (1984) Recombination-dependent recircularization of linearized pBR322 plasmid DNA following transformation of Escherichia coli. Mol Genet Genomics 194:211–218

    Article  CAS  Google Scholar 

  10. Van de Rest ME, Lange C, Molenaar DA (1999) Heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotech 52:541–545

    Article  Google Scholar 

  11. Bringel F, Hubert JC (1990) Optimized transformation by electroporation of Lactobacillus plantarum strains with plasmid vectors. Appl Microbiol Biotech 33:664–670

    Article  CAS  Google Scholar 

  12. Lechner M, Märkl H, Götz F (1988) Lipase production of Staphylococcus carnosus in a dialysis fermentor. Appl Microbiol Biotech 28:345–349

    Article  CAS  Google Scholar 

  13. Edwards RA, Helm RA, Maloy SR (1999) Increasing DNA transfer efficiency by temporary inactivation of host restriction. Biotechniques 26:892–898

    CAS  Google Scholar 

Download references

Acknowledgments

We cordially thank Professor Dr. Friedrich Götz (Eberhard-Karls-Universitaet, Tuebingen, Germany) for generously providing S. carnosus TM300 strain and plasmids pBT2, pCX19 and pTX15. This work is financially supported by National 973 Program of China (2011CB707401 and 2013CB734004), National 863 Program of China (2012AA021302), the Key Project for Innovative Research of Tianjin Binhai New Area of China (2011-BK120014) and National Science Foundation of China (31101275).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gao, Q., Wang, M., Yu, C., Huang, L., Zheng, X., Zhu, Y. (2014). Optimization of the Electroporation Conditions for DNA Transformation of Staphylococcus carnosus . In: Zhang, TC., Ouyang, P., Kaplan, S., Skarnes, B. (eds) Proceedings of the 2012 International Conference on Applied Biotechnology (ICAB 2012). Lecture Notes in Electrical Engineering, vol 251. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37925-3_182

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37925-3_182

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37924-6

  • Online ISBN: 978-3-642-37925-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics