Skip to main content

Design and Synthesis of 2-Arylbenzimidazole Analogues as Novel SIRT1 Activators for the Treatment of Type II Diabetes

  • Conference paper
  • First Online:
Proceedings of the 2012 International Conference on Applied Biotechnology (ICAB 2012)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 250))

  • 1776 Accesses

Abstract

SIRT1, an NAD+-dependent sirtuin deacetylase, has emerged as potential therapeutic target for treatment of human illnesses such as type II diabetes, cancer, cardiovascular and neurodegenerative diseases. Resveratrol, a naturally occurring small molecule activator of SIRT1, has been demonstrated to improve metabolism and glucose tolerance. SRT1720, an imidazothiazole derivative, recently made as the most potent SIRT1 activator is structurally unrelated to resveratrol. In this work, we design and synthesize a series of compounds as novel potential SIRT1 activators through a two-step convenient synthetic procedure. Fourteen 2-Arylbenzimidazole analogues were characterized on the basis of 1H NMR spectra. Tests for biological activity of these compounds are underway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dekker JM, Girman C, Gieln R, Nijpels G, Stehouwer CDA, Bouter LM, Heine RJ (2005) Metabolic syndrome and 10-year cardiovascular disease risk in the hoorn study. Epidemiology 112:666–673

    Google Scholar 

  2. Russo A, Autelitano M, Bisanti L (2008) Metabolic syndrome and cancer risk. Eur J Cancer 44(2):293–7

    Google Scholar 

  3. Guarente Leonard (2006) Sirtuins as potential targets for metabolic syndrome. Nature 444:868–874

    Article  CAS  Google Scholar 

  4. Rodgers, JT Carlos Lerin, Wilhelm Haas, Steven P Gygi Bruce. M,Spiegelman. (2005) Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434:113-118

    Google Scholar 

  5. Bordone L, Motta MC, Picard F, Robinson A, Ulupi SJ, Apfeld J (2006) Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol 4(2):e31

    Google Scholar 

  6. Moynihan KA, Grimm AA, Bernal-Mizrachi E, Plueger MM, Ford E, Cras-Méneur C, Permutt MA, Imai S (2005) Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab Aug; 2(2):105–17

    Google Scholar 

  7. Picard F, Kurtev M, Chung N et al (2004) SIRT1 promotes fat mobilization in white adipocytes by repressing PPAR-γ Nature 429:771–776

    Article  CAS  Google Scholar 

  8. Brunet A et al (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303:2011–2015

    Article  CAS  Google Scholar 

  9. Luo J et al (2001) Negative control of p53 by Sir2a promotes cell survival under stress. Cell 107:137–148

    Article  CAS  Google Scholar 

  10. Motta MC et al (2004) Mammalian SIRT1 represses forkhead transcription factors. Cell 116:551–563

    Article  CAS  Google Scholar 

  11. Vaziri H et al (2001) hSIR2 (SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107:149–159

    Article  CAS  Google Scholar 

  12. Wang C et al (2006) Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage. Nat Cell Biol 8:1025–1031

    Article  CAS  Google Scholar 

  13. Chen D et al (2005) Increase in activity during calorie restriction requires Sirt1. Science 310:1641

    Article  CAS  Google Scholar 

  14. Cohen HY et al (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305:390–392

    Article  CAS  Google Scholar 

  15. Bordone L, Guarente L (2005) Calorie restriction, SIRT1 and metabolism: understanding longevity. Nature Rev Mol Cell Biol 6:298–305

    Article  CAS  Google Scholar 

  16. Barzilai N, Banerjee S, Hawkins M, Chen W, Rossetti L (1998) Caloric restriction reverses hepatic insulin resistance in aging rats by decreasing visceral fat. J Clin Invest 101:1353–1361

    Article  CAS  Google Scholar 

  17. Smith JJ, Gagne DJ, Galonek HL (2009) Small molecule activators of SIRT1 replicate signaling pathways triggered by calorie restriction in vivo. BMC Syst Biol 3:31

    Article  Google Scholar 

  18. Baur JA et al (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342

    Article  CAS  Google Scholar 

  19. Wood JG et al (2004) Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature 430:686–689

    Article  CAS  Google Scholar 

  20. Milne JC, Philip D, Lambert, David P, Carney et al (2007) Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 29 450(7170):712–6

    Google Scholar 

  21. Tebbe MJ, Spitzer WA, F Victor S.C. Miller CC, Lee TR, Sattelberg E, Mckinney, Tang CJ (1997) Antirhino/enteroviral vinylacetylene benzimidazoles: a study of their activity and oral plasma levels in mice. J Med Chem 40 (24):3937–3946

    Google Scholar 

  22. Porcari AR, Devivar RV, Kucera LS, Drach JC, Townsend LB (1998) Design, synthesis, and antiviral evaluations of 1-(substituted benzyl)-2-substituted-5, 6-dichloro-benzimidazoles as nonnucleoside analogues of 2, 5, 6-trichloro1- ((-d-ribofuranosyl)benzimidazole. J Med Chem 41:1251

    Article  Google Scholar 

  23. Roth M, Morningstar ML, Boyer PL, Hughes SH, Bukheit RW, Michejda CJ (1997) Synthesis and biological activity of novel nonnucleoside inhibitors of HIV-1 reverse transcriptase. 2-Aryl-Substituted Benzimidazoles. J Med Chem40(26): 4199–4207

    Google Scholar 

  24. Migawa MT, Giradet JL, Walker JA, Koszalka GW, Chamber-Lain SD, Drach JC, Townsend LB (1998) Design, synthesis, and antiviral activity of α-Nucleosides: D- and L-Isomers of Lyxofuranosyl- and (5-Deoxylyxofuranosyl) benzimidazoles. J Med Chem 41(8):1242–1251

    Article  CAS  Google Scholar 

  25. Nadaf RN, Siddiqui SA, Daniel T, Lahoti RJ, Srinivasan KV (2004) Room temperature ionic liquid promoted regioselective synthesis of 2-arylbenzimidazoles, benzoxazoles and benzthiazoles under ambient conditions. J Mol Catal A: Chem 214:155

    Article  CAS  Google Scholar 

  26. Denny WA, Rewcastle GW, Baguley BC (1990) Structure-activity relationships for 2-phenylbenzimidazole-4-carbo-xamides, a new class of "minimal" DNA-intercalating agents which may not act via topoisomerase II. J Med Chem 33(2):814–819

    Article  CAS  Google Scholar 

  27. Forseca T, Gigante B, Gilchrist TL (2001) A short synthesis of phenanthro[2,3-d]imidazoles from dehydroabietic acid. Application of the methodology as a convenient route to benzimidazoles. Tetrahedron 57(9):1793–1799

    Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by National Natural Science Foundation of China (No: 81072521), Tianjin University of Science & Technology (No: 20100411), International Science & Technology Cooperation Program of China (2013DFA31160) and the Science & Technology Project of Tianjin (11ZCGHHZ00400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erbing Hua .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hu, F. et al. (2014). Design and Synthesis of 2-Arylbenzimidazole Analogues as Novel SIRT1 Activators for the Treatment of Type II Diabetes. In: Zhang, TC., Ouyang, P., Kaplan, S., Skarnes, B. (eds) Proceedings of the 2012 International Conference on Applied Biotechnology (ICAB 2012). Lecture Notes in Electrical Engineering, vol 250. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37922-2_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37922-2_71

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37921-5

  • Online ISBN: 978-3-642-37922-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics