Skip to main content

Effects of NTH1 Gene Deletion and Overexpressing TPS1 Gene on Freeze Tolerance in Baker’s Yeast

  • Conference paper
  • First Online:
  • 2632 Accesses

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 249))

Abstract

The content of trehalose is widely believed to be a major determinant of stress resistance in Saccharomyces cerevisiae. A neutral trehalase gene, NTH1, is involved in trehalose degradation and TPS1 encoding trehalose biosynthesis enzyme is improtant to trehalose accumulation in S. cerevisiae. In this research, the responses of two engineering strains, the deletion of NTH1nth1) and overexpression TPS1nth1 + TPS1), were investigated to freezing stresses. High trehalose accumulation and growth activity were observed in Δnth1 + TPS1 strain after freezing stress induction. Our results indicated that high trehalose accumulation can make yeast cells resistant freezing stress.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Takagi H, Iwamoto F, Nakamori S (1997) Isolation of freeze-tolerant laboratory strains of Saccharomyces cerevisiae from proline-analogue-resistant mutants. Appl Microbiol Biotechnol 47:405–411

    Article  CAS  Google Scholar 

  2. Jiang Z, Qi J, Den H et al (2002) Screening the freeze-tolerant yeast strains. J China Agric Univ 7:87–91

    Google Scholar 

  3. Hirasawa R, Yokoigawa K, Isobe Y et al (2001) Improving the freeze tolerance of bakers’ yeast by loading with trehalose. Biosci Biotechnol Biochem 65:522–526

    Article  CAS  Google Scholar 

  4. Mahmud SA, Hirasawa T, Shimizu H (2010) Differential importance of trehalose accumulation in Saccharomyces cerevisiae in response to various environmental stresses. J Biosci Bioeng 109:262–266

    Article  CAS  Google Scholar 

  5. Zahringer H, Burgert M, Holzer H et al (1997) Neutral trehalase Nthlp of Saccharomyces cerevisiae encoded by the NTH1 gene is a multiple stress responsive protein. FEBS Lett 412:615–620

    Article  CAS  Google Scholar 

  6. Ren Y, Liu J, Dai X et al (2003) Genes involved in biosynthesis and metabolism of trehalose and their use in biotechnology. Acta Microbiologica Sinica 43:821–825

    CAS  Google Scholar 

  7. Shima J, Hino A, Yamadalyo C et al (1999) Stress tolerance in doughs of Saccharomyces cerevisiae trehalase mutants derived from commercial Baker’s yeast. Appl Environ Microbiol 9:2841–2846

    Google Scholar 

  8. Bonini BM, Dijck PV, Thevelein JM (2003) Uncoupling of the glucose growth defect and the deregulation of glycolysis in Saccharomyces cerevisiae tps1 mutants expressing trehalose-6-phosphate-insensitive hexokinase from Schizosaccharomyces pombe. Biochim Biophys Acta 1606:83–93

    Article  CAS  Google Scholar 

  9. Lee J, Hai T, Pape H et al (2008) Three trehalose synthetic pathways in the acarbose-producing Actinoplanes sp. SN223/29 and evidence for the TreY role in biosynthesis of component. Appl Microbiol Biotechnol 80:767–778

    Article  CAS  Google Scholar 

  10. Gancedo C, Flores C (2004) The importance of a functional trehalose biosynthetic pathway for the life of yeasts and fungi. FEMS Yeast Res 4:351–359

    Article  CAS  Google Scholar 

  11. An M, Tang Y, Mitsumasu Liu Z et al (2011) Enhanced thermotolerance for ethanol fermentation of Saccharomyces cerevisiae strain by overexpression of the gene coding for trehalose-6-phosphate synthase. Biotechnol Lett 33:1367–1374

    Article  CAS  Google Scholar 

  12. Guo Z, Zhang L, Ding Z et al (2011) Minimization of glycerol synthesis in industrial ethanol yeast without influencing its fermentation performance. Metab Eng 13:49–59

    Article  CAS  Google Scholar 

  13. Jiang TX, Xiao DG, Gao Q (2008) Charactrisation of maltose metabolism in lean dough by lagging and non-lagging baker’s yeast strains. Annal Microbiol 58:655–660

    Article  CAS  Google Scholar 

  14. Zhang Y, Xiao DG, Zhang CY et al (2012) Effect of MIG1 gene deletion on glucose repression in Baker’s yeast. Adv Mater Res 396–398:1531–1535

    Google Scholar 

  15. Sharma SC (1997) A possible role of trehalose in osmotolerance and ethanol tolerance in Saccharomyces cerevisiae. FEMS Microbiol Lett 152:11–15

    Article  CAS  Google Scholar 

  16. Ferreir JC, VMFP, Panek AD (1996) Comparison of three different methods for trehalose determination in yeast extracts. Food Chem 60:251–254

    Article  Google Scholar 

  17. Lilly M, Lambrechts MG, Pretorius IS (2000) Effect of increased yeast alcohol acetyl transferase activity on flavor profiles of wine and distillates. Appl Environ Microbiol 66:744–753

    Article  CAS  Google Scholar 

  18. Hao X (2010) Study on higher alcohols metabolize and tolerance of Saccharomyces cerevisia. Tianjin University of Science and Technology, Tianjin

    Google Scholar 

  19. Zhang JW, Zhang CY, Dai LH et al (2012) Effects of overexpression of the alcohol acetyltransferase-encoding gene ATF1 and deletion of the esterase-encoding gene IAH1 on the flavour profiles of Chinese yellow rice wine. Int J Food Sci Tech 47:2590–2596

    Google Scholar 

Download references

Acknowledgments

The current study was financially supported by the National Natural Science Foundation of China (31171730), program for Changjiang Scholars and Innovative Research Team in University (IRT1166), and Major Project of Research Program on Applied Fundamentals and Advanced Technologies of Tianjin (10JCZDJC16700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cuiying Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wu, M., Zhang, C., Sun, X., Wang, G., Liu, Y., Xiao, D. (2014). Effects of NTH1 Gene Deletion and Overexpressing TPS1 Gene on Freeze Tolerance in Baker’s Yeast. In: Zhang, TC., Ouyang, P., Kaplan, S., Skarnes, B. (eds) Proceedings of the 2012 International Conference on Applied Biotechnology (ICAB 2012). Lecture Notes in Electrical Engineering, vol 249. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37916-1_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37916-1_46

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37915-4

  • Online ISBN: 978-3-642-37916-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics