Skip to main content

Deletion of Gene recG and its Susceptibility to Acetic Acid in Escherichia coli

  • Conference paper
  • First Online:
Proceedings of the 2012 International Conference on Applied Biotechnology (ICAB 2012)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 249))

Abstract

The gene recG encodes DNA helicase RecG which is involved in DNA replication, recombination, and repair. In this research, the λ Red homologous recombination system was used to delete recG gene of Escherichia coli resulting in the cut-off of part of the DNA repair pathway. The results showed that the recG-deficient mutant strain showed increasing significant growth disadvantages compared to the wild-type strain in the presence of acetic acid varied from 0.02–0.09 %. It was also observed that over 10-fold more recG-deficient mutant cells died than that of wild-type cells after shocking with 0.5 % acetic acid for 40 mins, specially, the mutant could not grow under 0.07 % acetic acid condition compared with the wild-type strain. The results showed that recG-deficient mutant strain is more susceptible to high concentration of acetic acid than the wild-type strain, indicating RecG may involve the repair of DNA damage caused by acetic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jordan SL, Glover J, Malcolm L et al (1999) Augmentation of killing of Escherichia coli O157 by combinations of lactate, ethanol, and low-pH conditions. Appl Environ Microbiol 65:1308–1311

    CAS  Google Scholar 

  2. Raja N, Goodson M, Chui WCM et al (1991) Habituation to acid in Escherichia coli: conditions for habituation and its effects on plasmid transfer. Appl Bacteriol 70:59–65

    Article  CAS  Google Scholar 

  3. Raja N, Goodson M, Smith DG, Rowbury RJ (1991) Increased DNA damage by acid and increased repair of acid-damaged DNA in acid-habituated Escherichia coli. Appl Bacteriol 70:507–511

    Article  CAS  Google Scholar 

  4. Bijlsma JJE, Lie-A-Ling M, Nootenboom CIC et al (2000) Identification of loci essential for the growth of Helicobacter pylori under acidic conditions. Infect Dis 182:1566–1569

    Article  CAS  Google Scholar 

  5. Thompson SA, Blaser MJ (1995) Isolation of the Helicobacter pylori recA gene and involvement of the recA region in resistance to low pH. Infect Immun 63:2185–2193

    CAS  Google Scholar 

  6. Sinha RP (1986) Toxicity of organic acids for repair-deficient strains of Escherichia coli. Appl Environ Microbiol 51:1364–1366

    CAS  Google Scholar 

  7. Steiner P, Sauer U (2003) Overexpression of the ATP-dependent helicase RecG improves resistance to weak organic acids in Escherichia coli. Appl Microbiol Biotechnol 63:293–299

    Article  CAS  Google Scholar 

  8. Lloyd RG, Buckman C (1991) Genetic analysis of the recG locus of Escherichia coli K-12 and of its role in recombination and DNA repair. Bacteriol 173:1004–1011

    CAS  Google Scholar 

  9. Whitby MC, Vincent SD, Lloyd RG (1994) Branch migration of Holliday junctions: identification of RecG protein as a junction specific DNA helicase. EMBO J 13:5220–5228

    CAS  Google Scholar 

  10. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97(12):6640–6645

    Article  CAS  Google Scholar 

  11. Hartke A, Bouche S, Gansel X et al (1995) UV-inducible proteins and UV-induced cross protection against acid, ethanol, H2O2 or heat treatments of Lactobacillus lactis subsp Lactis. Arch Microbiol 163:329–336

    Article  CAS  Google Scholar 

  12. Miranda AT, Gonzalez MV, Gonzalez G et al (2005) Involvement of DNA helicases in chromate resistance by Pseudomonas aeruginosa PAO1. Mutat Res-Fund Mol M 578:202–209

    Article  CAS  Google Scholar 

  13. Booth IR, Cash P, Byrne CO (2002) Sensing and adapting to acid stress. Anton Leeuw Int J G 81:33–42

    Article  CAS  Google Scholar 

  14. Audia JP, Webb CC, Foster JW (2001) Breaking through the acid barrier: an orchestrated response to proton stress by enteric bacteria. Int J Med Microbiol 291:97–106

    Article  CAS  Google Scholar 

  15. Foster JW (1995) Low pH adaptation and the acid tolerance response of Salmonella typhimurium. Crit Rev Microbiol 21:215–237

    Article  CAS  Google Scholar 

  16. Hanna MN, Ferguson RJ, Li YH et al (2001) uvrA is an acid-inducible gene involved in the adaptive response to low pH in Streptococcus mutans. J Bacteriol 183:5964–5973

    Article  CAS  Google Scholar 

  17. Friedberg EC, Walker GC, Siede W (1995) DNA Repair and muta-genesisM. ASM Press, Washington

    Google Scholar 

  18. West SC (1997) Processing of recombination intermediates by the RuvABC proteins. Annu Rev Genet 31:213–244

    Article  CAS  Google Scholar 

  19. Sharples GJ, Ingleston SM, Lloyd RG (1999) Holliday junction processing in bacteria: insights from the evolutionary conservation of RuvABC, RecG and RusA. J Bacteriol 181:5543–5550

    CAS  Google Scholar 

  20. Cherrington CA, Hinton M, Mead GC et al (1991) Organic acids: chemistry, antibacterial activity and practical applications. Adv Microb Physiol 32:87–108

    CAS  Google Scholar 

  21. McGlynn P, Lloyd RG (2002) Genome stability and the processing of damaged replication forks by RecG. Trends Genet 18:413–419

    Article  CAS  Google Scholar 

  22. Singleton MR, Scaife S, Wigley DB (2001) Structural analysis of DNA replication fork reversal by RecG. Cell 107:79–89

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National High Technology Research and Development Program of China (2012AA022108), Program for Changjiang Scholars and Innovative Research Team in University (IRT1166), Doctoral Program Foundation of Institutions of Higher Education of China (20101208120003), National Natural Science Foundation of China (31201406), and Foundation of Tianjin University of Science and Technology (20110114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zheng, Y., Han, Q., Jiang, C., Nie, Z., Wang, M. (2014). Deletion of Gene recG and its Susceptibility to Acetic Acid in Escherichia coli . In: Zhang, TC., Ouyang, P., Kaplan, S., Skarnes, B. (eds) Proceedings of the 2012 International Conference on Applied Biotechnology (ICAB 2012). Lecture Notes in Electrical Engineering, vol 249. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37916-1_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37916-1_36

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37915-4

  • Online ISBN: 978-3-642-37916-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics