Skip to main content

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 70))

Abstract

The fracture-mechanical characterization of elastomeric materials is based on a global energy balance. Tearing energy was introduced to characterize the energy required for an infinitesimal increase of surface area during crack propagation. The contribution of various energy dissipation mechanisms during such a process of crack propagation is crucial for the understanding and modification of elastomeric materials with respect to an enhanced service life. Energy balance is reviewed from both a theoretical and experimental point of view, leading on the one hand to possibilities and limits of generalized J-integrals for fracture mechanical characterization of elastomeric materials, and on the other hand to alternative procedures of experimental characterization of crack propagation in elastomers. In order to analyze the influence of viscoelastic material behavior on the crack propagation behavior in elastomeric materials, steady state fields were calculated dependent on the crack velocity. The results indicate a change in the size of the fracture process zone where the defect evolution takes place. Such characteristic length scales of the fracture process zone can be estimated from a statistical analysis of fracture surface topography by means of determining characteristic self-affine roughness exponents. A modeling of the material degradation due to the rupture of polymer chain segments within the fracture process zone was proposed, taking into account the overloading of chains both in the fully stretched state and due to fast loading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Griffith, A.A.: The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London. Series A, 163–198 (1921)

    Google Scholar 

  2. Rivlin, R.S., Thomas, A.G.: Rupture of rubber. I. Characteristic energy for tearing. Journal of Polymer Science 10, 291–318 (2003)

    Article  Google Scholar 

  3. Kanninen, M.F., Popelar, C.L.: Advanced fracture mechanics. Oxford University Press (1985)

    Google Scholar 

  4. Sumpter, J.D.G.: An alternative view of R curve testing. Engineering Fracture Mechanics 64, 161–176 (1999)

    Article  Google Scholar 

  5. Sumpter, J.D.G.: Energy rates and crack stability in small scale yielding. International Journal of Fracture 130, 667–681 (2004)

    Article  MATH  Google Scholar 

  6. Sumpter, J.D.G.: The energy dissipation rate approach to tearing instability. Engineering Fracture Mechanics 71, 17–37 (2004)

    Article  Google Scholar 

  7. Turner, C.E.: A re-assessment of ductile tearing resistance, Part I: The geometry dependence of JR curves in fully plastic bending. Part II: Energy dissipation rate and associated R-curves on normalized axes. In: Firraro, D. (ed.) Fracture Behaviour and Design of Materials and Structures, Turin, pp. 933–949 (1990)

    Google Scholar 

  8. Brocks, W., Anuschewski, P.: Parametrizing ductile tearing resistance by four parameters. Engineering Fracture Mechanics 71, 127–146 (2004)

    Article  Google Scholar 

  9. Memhard, D., Brocks, W., Fricke, S.: Characterization of ductile tearing resistance by energy dissipation rate. Fatigue & Fracture of Engineering Materials & Structures 16, 1109–1124 (1993)

    Article  Google Scholar 

  10. Kolednik, O.: On the physical meaning of the J-Δa-curves. Engineering Fracture Mechanics 38, 403–412 (1991)

    Article  Google Scholar 

  11. Kolednik, O., Turner, C.E.: Application of energy dissipation rate arguments to ductile instability. Fatigue & Fracture of Engineering Materials & Structures 17, 1129–1145 (2007)

    Article  Google Scholar 

  12. Strobl, G.R.: The physics of polymers: concepts for understanding their structures and behavior. Springer (2007)

    Google Scholar 

  13. Klüppel, M.: The role of disorder in filler reinforcement of elastomers on various length scales. Advances in Polymer Science 164, 1–86 (2003)

    Article  Google Scholar 

  14. Rice, J.R.: A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics 35, 379–386 (1968)

    Article  Google Scholar 

  15. Cherepanov, G.P.: Crack propagation in continuous media. Applied Mathematics and Mechanics (PMM) 31, 503–512 (1967)

    Article  MATH  Google Scholar 

  16. Freund, L.B.: Dynamic fracture mechanics. Cambridge University Press (1998)

    Google Scholar 

  17. Maugin, G.A., Muschik, W.: Thermodynamics with internal variables. Part I. General concepts. Journal of Non-Equilibrium Thermodynamics 19, 217–249 (1994)

    MATH  Google Scholar 

  18. Maugin, G.A., Muschik, W.: Thermodynamics with internal variables. Part II. Applications. Journal of Non-Equilibrium Thermodynamics 19, 250–289 (1994)

    Google Scholar 

  19. Maugin, G.: Material Inhomogeneities in Elasticity. Chapman & Hall (1993)

    Google Scholar 

  20. Maugin, G.: Material forces: concepts and applications. Applied Mechanics Reviews 48, 213–245 (1995)

    Article  MathSciNet  Google Scholar 

  21. Steinmann, P.: Application of material forces to hyperelastostatic fracture mechanics. I. Continuum mechanical setting. International Journal of Solids and Structures 37, 7371–7391 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Steinmann, P., Ackermann, D., Barth, F.: Application of material forces to hyperelastostatic fracture mechanics. II. Computational setting. International Journal of Solids and Structures 38, 5509–5526 (2001)

    Article  MATH  Google Scholar 

  23. Mueller, R., Kolling, S., Gross, D.: On configurational forces in the context of the finite element method. International Journal for Numerical Methods in Engineering 53, 1557–1574 (2001)

    Article  MathSciNet  Google Scholar 

  24. Näser, B., Kaliske, M., Müller, R.: Material forces for inelastic models at large strains: application to fracture mechanics. Computational Mechanics 40, 1005–1013 (2007)

    Article  MATH  Google Scholar 

  25. Simha, N., Fischer, F., Shan, G., Chen, C., Kolednik, O.: J-integral and crack driving force in elastic–plastic materials. Journal of the Mechanics and Physics of Solids 56, 2876–2895 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Horst, T., Lauke, B., Heinrich, G.: Application of configurational forces in the context of a kinked crack. Proceedings of Applied Mathematics and Mechanics 6, 173–174 (2007)

    Article  Google Scholar 

  27. Hakim, V., Karma, A.: Crack path prediction in anisotropic brittle materials. Physical Review Letters 95, 235501 (2005)

    Article  Google Scholar 

  28. Hakim, V., Karma, A.: Laws of crack motion and phase-field models of fracture. Journal of the Mechanics and Physics of Solids 57, 342–368 (2009)

    Article  MATH  Google Scholar 

  29. Netzker, C., Dal, H., Kaliske, M.: An endochronic plasticity formulation for filled rubber. International Journal of Solids and Structures 47, 2371–2379 (2010)

    Article  MATH  Google Scholar 

  30. Netzker, C., Horst, T., Reincke, K., Behnke, R., Kaliske, M., Heinrich, G., Grellmann, W.: Analysis of stable crack propagation in filled rubber based on a global energy balance. International Journal of Fracture (2013), doi:10.1007/s10704-013-9816-5

    Google Scholar 

  31. Gent, A.N., Wang, C.: Fracture mechanics and cavitation in rubber-like solids. Journal of Materials Science 26, 3392–3395 (1991)

    Article  Google Scholar 

  32. Persson, B.N.J., Albohr, O., Heinrich, G., Ueba, H.: Crack propagation in rubber-like materials. Journal of Physics: Condensed Matter 17, R1071–R1142 (2005)

    Google Scholar 

  33. Persson, B.N.J., Brener, E.A.: Crack propagation in viscoelastic solids. Physical Review E 71, 36123 (2005)

    Article  Google Scholar 

  34. Tschoegl, N.W.: The phenomenological theory of linear viscoelastic behavior: An introduction. Springer (1989)

    Google Scholar 

  35. Graham, G.A.C.: The correspondence principle of linear viscoelasticity theory for mixed boundary value problems involving time-dependent boundary regions. Quarterly of Applied Mathematics 26, 167–174 (1968)

    MATH  Google Scholar 

  36. Horst, T., Heinrich, G.: Crack propagation behavior in rubber materials. Polymer Science Series A 50, 583–590 (2008)

    Article  Google Scholar 

  37. Bouchaud, E., Lapasset, G., Planes, J.: Fractal dimension of fractured surfaces: a universal value. Europhysics Letters 13, 73–79 (1990)

    Article  Google Scholar 

  38. Bouchaud, E.: The morphology of fracture surfaces: A tool for understanding crack propagation in complex materials. Surface Review Letters 10, 797–814 (2003)

    Article  Google Scholar 

  39. Ponson, L.: Crack propagation in disordered materials: how to decipher fracture surfaces. Annales de Physique 32, 1–120 (2007)

    Article  Google Scholar 

  40. Bonamy, D.: Intermittency and roughening in the failure of brittle heterogeneous materials. Journal of Physics D: Applied Physics 42, 214014 (2009)

    Article  Google Scholar 

  41. Horst, T., Reincke, K., Ilisch, S., Heinrich, G., Grellmann, W.: Fracture surface statistics of filled elastomers. Physical Review E 80, 46120 (2009)

    Article  Google Scholar 

  42. Santucci, S., Maloy, K.J., Delaplace, A., Mathiesen, J., Hansen, A., Haavig Bakke, J., Schmittbuhl, J., Vanel, L., Ray, P.: Statistics of fracture surfaces. Physical Review E 75, 16104 (2007)

    Article  Google Scholar 

  43. Family, F., Vicsek, T.: Dynamics of fractal surfaces. World Scientific (1991)

    Google Scholar 

  44. Marinello, F., Bariani, P., Savio, E., Horsewell, A., De Chiffre, L.: Critical factors in SEM 3D stereo microscopy. Measurement Science and Technology 19, 065705 (2008)

    Article  Google Scholar 

  45. Baumberger, T., Caroli, C., Martina, D., Ronsin, O.: Magic nagles and cross-hatching instability in hydrogel fracture. Physical Review Letters 100, 178303 (2008)

    Article  Google Scholar 

  46. Febbo, M., Milchev, A., Rostiashvili, V., Dimitrov, D., Vilgis, T.A.: Dynamics of a stretched nonlinear polymer chain. Journal of Chemical Physics 129, 154908 (2008)

    Article  Google Scholar 

  47. Peerlings, R.H.J.: Enhanced damage modelling for fracture and fatigue. PhD thesis, Technische Universiteit Eindhoven (1999)

    Google Scholar 

  48. Peerlings, R.H.J., de Borst, R., Brekelmans, W.A.M., de Vree, J.H.P., Spee, I.: Some observations on localisation in non-local and gradient damage models. European Journal of Mechanics, Series A: Solids 15, 937–954 (1996)

    MATH  Google Scholar 

  49. Geers, M.G.D., Peerlings, R.H.J., Brekelmans, W.A.M., de Borst, R.: Phenomenological nonlocal approaches based on implicit gradient-enhanced damage. Acta Mechanica 144, 1–15 (2000)

    Article  MATH  Google Scholar 

  50. Peerlings, R.H.J., Massart, T.J., Geers, M.G.D.: A thermodynamically motivated implicit gradient damage framework and its application to brick masonry cracking. Computer Methods in Applied Mechanics and Engineering 193, 3403–3417 (2004)

    Article  MATH  Google Scholar 

  51. Engelen, R.A.B., Geers, M.G.D., Baaijens, F.: Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behavior. International Journal of Plasticity 19, 403–433 (2003)

    Article  MATH  Google Scholar 

  52. Areias, P.M.A., César de Sá, J.M.A., António, C.A.: A gradient model for finite strain elastoplasticity coupled with damage. Finite Elements in Analysis and Design 39, 1191–1235 (2003)

    Article  Google Scholar 

  53. Bui, Q.V.: Initiation of damage with implicit gradient-enhanced damage models. International Journal of Solids and Structures 47, 2425–2435 (2010)

    Article  MATH  Google Scholar 

  54. Holzapfel, G.A.: Nonlinear solid mechanics: a continuum approach for engineering. John Wiley & Sons Ltd. (2000)

    Google Scholar 

  55. Heinrich, G., Straube, E., Helmis, G.: Rubber elasticity of polymer networks: theories. Advances in Polymer Science 85, 33–87 (1988)

    Article  Google Scholar 

  56. Maugin, G.A.: The thermomechanics of plasticity and fracture. Cambridge University Press (1992)

    Google Scholar 

  57. Holzapfel, G.A.: On large strain viscoelasticity: continuum formulation and finite element applications to elastomeric structures. International Journal for Numerical Methods in Engineering 39, 3903–3926 (1998)

    Article  Google Scholar 

  58. http://www.fenicsproject.org

  59. Logg, A., Mardal, K.-A., Wells, G.N.: Automated Solution of Differential Equations by the Finite Element Method. Springer (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Horst, T., Heinrich, G., Schneider, M., Schulze, A., Rennert, M. (2013). Linking Mesoscopic and Macroscopic Aspects of Crack Propagation in Elastomers. In: Grellmann, W., Heinrich, G., Kaliske, M., Klüppel, M., Schneider, K., Vilgis, T. (eds) Fracture Mechanics and Statistical Mechanics of Reinforced Elastomeric Blends. Lecture Notes in Applied and Computational Mechanics, vol 70. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37910-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37910-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37909-3

  • Online ISBN: 978-3-642-37910-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics