Skip to main content

Aggregate and Disaggregate Dynamic Spatial Interaction Approaches to Modeling Coin Diffusion

  • Chapter
  • First Online:
Spatial Analysis and Location Modeling in Urban and Regional Systems

Part of the book series: Advances in Geographic Information Science ((AGIS))

  • 1287 Accesses

Abstract

With the 2002 introduction of the euro as a common currency in Europe, the possibility has emerged to assess international mobility using this new tracer, given that every coin bears a specific national side. Using a simple two-country framework, four dynamic modeling strategies were designed in order to simulate the diffusion of coins and to understand how this diffusion is affected by population size, mobility rates and coin exchange processes. Methodological implications are raised with respect to aggregation, synchronicity and stochasticity issues.

Although each model converges to an equilibrium, the time to reach this end stage and the level of coin mixing in each country strongly varies with the modeling strategy. Calibration is undertaken with French data, using mobility rates as adjustment variables. The experiment shows that convergence to a perfect mix of coins can only be obtained if reciprocal exchanges are modeled, with a time horizon around 2064 – while non-reciprocal models indicate an imperfect mix converging in the year 2020 at the latest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A two-ways asynchronous model would correspond to a situation where the total currency available in each place would be updated after the moves of agents. Mobile agent would nevertheless be able to conduct a transaction only with immobile agents at destination. Consequently, they would return home with the same money bag as in Model I. Besides, if the locals are the receivers, then they would receive the same money as if they were moving to the other city, again resembling Model I. A two-ways asynchronous model would thus add little sense at an aggregated level and is not analyzed in this paper.

  2. 2.

    Asymptotic regression with lower limit at 0 (2 parameters).

References

  • Allen, P., & Sanglier, M. (1979). A dynamic model of growth in a central place system. Geographical Analysis, 11, 256–272.

    Google Scholar 

  • Allen, P., & Sanglier, M. (1981). Urban evolution, self organisation and decision-making. Environment and Planning, 13, 168–183.

    Google Scholar 

  • Allen, P. M. (1997). Cities and regions as self-organizing systems: Models of complexity. London: Taylor and Francis.

    Google Scholar 

  • Anas, A. (1983). Discrete choice theory, information theory and the multinomial logit and gravity models. Transportation Research B, 17, 13–23.

    Google Scholar 

  • Andersson, H., & Britton, T. (2000). Stochastic epidemic models and their statistical analysis. New York: Springer.

    Google Scholar 

  • Arthur, W. B. (1988). Urban systems and historical path dependence. In J. Ausubel & R. Herman (Eds.), Cities and their vital systems: Infrastructure, past, present and future (pp. 85–97). Washington, DC: National Academy Press.

    Google Scholar 

  • Aziz-Alaoui, M., & Bertelle, C. (Eds.) (2009). From system complexity to emergent properties. Berlin: Springer.

    Google Scholar 

  • Barro, R. J., & Sala-i-Martin, X. X. (1992). Convergence. Journal of Political Economy, 100, 223–251.

    Google Scholar 

  • Batty, M. (2008). The size, scale, and shape of cities. Science, 319(5864), 769–771.

    Google Scholar 

  • Berry, B. J. L. (1964). Cities as systems within systems of cities. Papers in Regional Science, 13, 147–163.

    Google Scholar 

  • Berroir, S., Grasland, C., Guérin-Pace, F., & Hamez, G. (2005). La diffusion spatiale des pièces euro en Belgique et en France. Revue belge de Géographie (Belgeo), 4, 345–358.

    Google Scholar 

  • Bretagnolle, A., Daudé, E., & Pumain, D. (2003). From theory to modelling: Urban systems as complex systems. Cybergeo: European Journal of Geography, Dossiers, 13e Colloque Européen de Géographie Théorique et Quantitative, Lucca, Italie, 8–11 Septembre 2003. http://cybergeo.revues.org/2420

  • Bretagnolle, A., Mathian, H., Pumain, D., & Rozenblat, C., Dossiers, 11th European Colloqium on Quantitative and Theoritical Geography, Durham Castle, UK, September 3–7 1999. Long-term dynamics of European towns and cities: towards a spatial model of urban growth. Cybergeo: Revue européenne de géographie [on line], mis en ligne le 29 Mars 2000. http://cybergeo.revues.org/566

  • Brockmann, D. (2008). Money circulation science – fractional dynamics in human mobility. In K. Rainer, G. Radons, & I. M. Sokolov (Eds.), Anomalous transport: Foundations and applications (pp. 459–484). Weinheim: Wiley-VCH.

    Google Scholar 

  • Brockmann, D. (2010). Following the money. Physics World, 23, 31–34.

    Google Scholar 

  • Brockmann, D., & Hufnagel, L. (2007). The scaling law of human travel – a message from George. In: B. Blasius (Ed.), Nonlinear modeling in ecology, epidemiology and genetics (pp. 109–127). Hackensack: World Scientific.

    Google Scholar 

  • Brockmann, D., & Theis, F. (2008). Money circulation, trackable items, and the emergence of universal human mobility patterns. IEEE Pervasive Computing, 7, 28–35.

    Google Scholar 

  • Bursche, A. (2002). Circulation of Roman coinage in northern Europe in late antiquity. Histoire & Mesure, XVII(3), 121–141.

    Google Scholar 

  • Busnel, Y., Bertier, M., & Kermarrec, A. M. (2008). On the impact of the mobility on convergence speed of population protocols. Research Report, Institute National de Recherche en Informatique et Application (INRIA), No 6580, July 2008.

    Google Scholar 

  • Casetti, E. (1969). Why do diffusion processes conform to logistic trends? Geographical Analysis, 1(1), 101–105.

    Google Scholar 

  • Chakraborti, A., Muni Toke, I., Patriarca, M., & Abergel, F. (2011). Econophysics review: II Agent-based models. Quantitative Finance, 11(7), 1013–1041.

    Google Scholar 

  • de Meijer, C. R. W. (2010). The single euro cash area. European Payments Council Newsletter, 8(10), 1–9.

    Google Scholar 

  • Dragulescu, A., & Yakovenko, V. M. (2001). Exponential and power-law probability distributions of wealth and income in the United Kingdom and the United States. Physica A, 299, 213–221.

    Google Scholar 

  • Edwards, M., Huet, S., Goreaud, F., & Deffuant, G. (2003). Comparing an individual-based model of behaviour diffusion with its mean field aggregate approximation. Journal of Artificial Societies and Social Simulation, 6(4), http://jasss.soc.surrey.ac.uk/6/4/9.html.

  • Eurodiffusie. (2011). Volg de verspreiding van de euromunten door Europa! http://www.eurodiffusie.nl/. Accessed Feb 2011.

  • European, C. (2003). The introduction of euro banknotes and coins – one year after. Official Journal of the European Union. [COM(2002) 747 final - Official Journal C 36 of 15.02.2003].

    Google Scholar 

  • Eurostat. (2012). Statistic database. http://epp.eurostat.ec.europa.eu/. Accessed Sept 2012.

  • Floch, J.-M. (2011). Vivre en deca de la frontière, travailler au-delà. Insee Première, 1337, 1–4.

    Google Scholar 

  • Fotheringham, A., & O’Kelly, M. E. (1989). Spatial interaction models: Formulations and applications. Dordrecht: Kluwer.

    Google Scholar 

  • Gil-Quijano, J., Louail, T., & Hutzler, G. (2012). From biological to urban cells: Lessons from three multilevel agent-based models. In N. Desai, A. Liu, & M. Winikoff (Eds.), Principles and practice of multi-agent systems (pp. 620–635). Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Gilbert, N., Troitzsch, K. G. (2011). Simulation for the social scientist, 2nd ed. Buckingham: Open University Press.

    Google Scholar 

  • Grasland, C. (2009). Spatial analysis of social facts. In: F. Bavaud, & C. Mager (Eds.), Handbook of theoretical and quantitative geography (pp. 117–174). Lausanne: FGSE.

    Google Scholar 

  • Grasland, C., & Guérin-Pace, F., 5–9 septembre 2003. Euroluca: A simulation model of euro coins diffusion. In Proceedings of the 13th European Colloquium on Theoretical and Quantitative Geography (pp. 24), Lucca.

    Google Scholar 

  • Grasland, C., Guérin-Pace, F., Le Texier, M., & Garnier, B. (2012). Diffusion of foreign euro coins in France, 2002–2012. Population and Societies, 488, 1–4.

    Google Scholar 

  • Grasland, C., Guérin-Pace, F., & Nuno, J.-C. (2005a). Interaction spatiale et réseaux sociaux. modélisation des déterminants physiques, sociaux et géographiques de la diffusion des pièces euro entre pays de la zone euro. In: 2eme Colloque “Systèmes Complexes en SHS”. Paris.

    Google Scholar 

  • Grasland, C., Guérin-Pace, F., Terrier, C., 2005b. La diffusion spatiale, sociale et temporelle des pièces euros étrangères : un problème complexe. Actes des journées de Méthodologie Statistique.

    Google Scholar 

  • Grasland, C., Guérin-Pace, F., & Tostain, A. (2002). La circulation des euros, reflet de la mobilité des hommes. Population et Sociétés, 384, 4.

    Google Scholar 

  • Guermond, Y. (2008). From classic models to incremental models. In Y. Guermond (Ed.), The modeling process in geography: From determinism to complexity (GIS series, pp. 15–38). London: ISTE and WILEY.

    Chapter  Google Scholar 

  • Haken, H. (1977). Synergetics, an introduction. New York: Springer.

    Book  Google Scholar 

  • Hägerstrand, T. (1952). The propagation of innovation waves. B(4). Lund: Royal University of Lund.

    Google Scholar 

  • Hägerstrand, T. (1970). What about people in regional science? Regional Science Association Papers, 24, 7–21.

    Article  Google Scholar 

  • Huff, D. (1964). Defining and estimating a trading area. Journal of Marketing, 28, 34–38.

    Article  Google Scholar 

  • Kitamura, R. (1984a). A model of daily time allocation to discretionary out-of-home activities and trips. Transportation Research B, 18, 255–266.

    Article  Google Scholar 

  • Kitamura, R. (1984b). Incorporating trip chaining into analysis of destination choice. Transportation Research B, 18, 67–81.

    Article  Google Scholar 

  • Lerman, S. (1979). The use of disaggregate coice models in semi-Markov process models of trip chaining behaviour. Transportation Science, 13, 273–291.

    Article  Google Scholar 

  • Moisil, D. (2002). The Danube limes and the barbaricum (248–498 a.d.). A study in coin circulation. Histoire & Mesure, 17(3), 79–120.

    Article  Google Scholar 

  • Nijkamp, P., & Reggiani, A. (1987). Spatial interaction and discrete choice: Staties and dynamics. In J. Hauer, H. Timmermans, & N. Wrigley (Eds.), Contemporary developments in quantitative geography. Dordrecht: Reidel.

    Google Scholar 

  • Nuno, J., Grasland, C., Blasco, F., Guérin-Pace, F., & Olarrea, J. (2005). How many coins are you carrying in your pocket? Physica A, 354, 432–436.

    Article  Google Scholar 

  • Oberländer-Törnoveanu, E. (2002). La monnaie byzantine des vi-viiieme siècles au-delà de la frontière du bas-danube. entre politique, économie et diffusion culturelle. Histoire & Mesure, 17(3), 155–196.

    Article  Google Scholar 

  • Orcutt, G. (1957). A new type of socio-economic system. Review of Economics and Statistics, 58, 773–797.

    Google Scholar 

  • O’Sullivan, D. (2004). Complexity science and human geography. Transactions of the Institute of British Geographers, 29(3), 282–295.

    Article  Google Scholar 

  • Portugali, J. (2000). Self-organization and the city. Berlin: Springer.

    Book  Google Scholar 

  • Prigogine, I., & Stengers, I. (1979). La nouvelle alliance. Paris: Gallimard.

    Google Scholar 

  • Pumain, D. (1998). Les modèles d’auto-organisation et le changement urbain. Cahiers de Géographie de Québec, 42(117), 349–366.

    Article  Google Scholar 

  • Pumain, D. (2003). Une approche de la complexité en géographie. Géocarrefour, 78(1), 25–31.

    Article  Google Scholar 

  • Pumain, D., Paulus, F., & Vacchiani-Marcuzzo, C. (2009). Innovation cycles and urban dynamics. In D. Lane, D. Pumain, S. Van der Leeuw, & G. West (Eds.), Complexity perspectives on innovation and social change (Methodos series, Vol. 7, pp. 237–260). Berlin: Springer.

    Chapter  Google Scholar 

  • Pumain, D., Sanders, L., & Saint-Julien, T. (1989). Villes et auto-organisation. Paris: Economica.

    Google Scholar 

  • Quijano, J. G., Piron, M., & Drogoul, A. (2007). Vers une simulation multi-agent de groupes d’individus pour modéliser les mobilités résidentielles intra-urbaines. Revue internationale de Géomatique/European Journal of GIS and Spatial Analysis, 17(2), 161–181.

    Article  Google Scholar 

  • Rappaport, J. (2004). A simple model of city crowdedness. Research Working Paper RWP 04-12, Federal Reserve Bank of Kansas City.

    Google Scholar 

  • Ravenstein, E. (1889). The laws of migration. Journal of the Royal Statistical Society of London, 52(2), 241–305.

    Article  Google Scholar 

  • Reilly, W. J. (1929). Methods for the study of retail relationships (No. 2944). Austin: University of Texas Bulletin.

    Google Scholar 

  • Reilly, W. (1931). The law of retail gravitation. New York: Knickerbocker Press.

    Google Scholar 

  • Roy, J. R. (2004). Spatial interaction modelling: A regional science context. Berlin/New-York: Springer.

    Book  Google Scholar 

  • Roy, J. R., & Less, P. (1981). On appropriate microstate descriptions in entropy modelling. Transportation Research B, 15, 85–96.

    Article  Google Scholar 

  • Sanders, L. (2007). Objets géographiques et simulation agent, entre thématique et méthodologie. Revue internationale de Géomatique/European Journal of GIS and Spatial Analysis, 17(2), 135–160.

    Article  Google Scholar 

  • Seitz, F., Stoyan, D., & Tödter, K.-H. (2009). Coin migration within the euro area (Discussion Paper Series 1: Economic Studies 27). Frankfurt: Deutsche Bundesbank.

    Google Scholar 

  • Seitz, F., Stoyan, D., & Tödter, K.-H. (2012). Coin migration and seigniorage within the euro area. Jahrbücher f. Nationalökonomie u. Statistik, 232(1), 84–92. Deutsche Bundesbank.

    Google Scholar 

  • Shnerb, N. M., Louzoun, Y., Bettelheim, E., & Solomon, S. (2000). The importance of being discrete: Life always wins on the surface. In PNAS (Proceedings of the National Academy of Sciences of the United States of America) (Vol. 97).

    Google Scholar 

  • Solé, R. V., Gamarra, J. G. P., Ginovart, M., & Lopez, D. (1999). Controlling chaos in ecology: From deterministic to individual-based models. Bulletin of Mathematical Biology, 61, 1187–1207.

    Article  Google Scholar 

  • Stewart, J. (1947). Empirical mathematical rules concerning the distribution and equilibrium of population. Geographical Review, 37, 461–486.

    Article  Google Scholar 

  • Stoyan, D. (2002). Statistical analyses of euro coin mixing. Mathematical Spectrum, 35, 50–55.

    Google Scholar 

  • Stoyan, D., Stoyan, H., & Dödge, G. (2004). Statistical analyses and modelling of the mixing process of euros coins in Germany and Europe. Australian & New Zealand Journal of Statistics, 46, 67–77.

    Article  Google Scholar 

  • Tobler, W. (1970). A computer movie simulating urban growth in the Detroit region. Economic Geography, 46, 234–240.

    Article  Google Scholar 

  • Tobler, W. R. (1981). A model of geographical movement. Geographical Analysis, 13(1), 1–20.

    Article  Google Scholar 

  • Tsotselia, M. (2002). Recent Sasanian coin findings on the territory of Georgia. Histoire & Mesure, 17(3), 143–153.

    Article  Google Scholar 

  • Ujes, D. (2002). Coins of the Macedonian kingdom in the interior of Balkans. Their inflow and use in the territory of the Scordisci. Histoire & Mesure, 17(3), 7–41.

    Article  Google Scholar 

  • van Blokland, P., Boot, L., Hiremath, K., Hochstenbach, M., Koole, G., Pop, S., Quant, M., & Wirosoetisno, D. (2002). The euro diffusion project. Proceedings of the 42nd European Study Group with Industry.

    Google Scholar 

  • Wegener, M. (2000). Spatial models and GIS. In A. S. Fotheringham & M. Wegener (Eds.), Spatial models and GIS: New potential and new models (pp. 3–20). London: Taylor and Francis.

    Google Scholar 

  • Weidlich, W. (2003). Socio-dynamics – a systematic approach to mathematical modelling in the social sciences. Chaos, Solitons and Fractals, 18, 431–437.

    Article  Google Scholar 

  • Weidlich, W., & Haag, G. (1988). The migratory equations of motion. In W. Weidlich & G. Haag (Eds.), Interregional migration (pp. 21–32). Berlin: Springer.

    Chapter  Google Scholar 

  • White, R., Engelen, G., & Uljee, I. (1997). The use of constrained cellular automata for high-resolution modelling of urban land use dynamics. Environment and Planning B, 24, 323–343.

    Article  Google Scholar 

  • White, R. W. (1977). Dynamical central place theory. Geographical Analysis, 9, 226–243.

    Article  Google Scholar 

  • White, R. W. (1978). The simulation of central place dynamics: Two sector systems and the rank size rule. Geographical Analysis, 10, 201–208.

    Article  Google Scholar 

  • Wilson, A. (1967). A statistical theory of spatial distribution models. Transportation Research, 1, 253–269.

    Article  Google Scholar 

  • Wilson, A. (1970). Entropy in urban and regional modelling. London: Pion.

    Google Scholar 

  • Wilson, A. (1981). Catastrophe theory and bifurcation: Application to urban and regional system. London: Croom Helm.

    Google Scholar 

  • Wilson, A. G. (2002). Complex spatial systems: Challenges for modellers. Mathematical and Computer Modelling, 36(3), 379–387.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Nathalie Corson, Florent Le Néchet, Hélène Mathian, Romain Reuillon and Clara Schmitt for their help. This research benefited from funding by the Fonds National de la Recherche (FNR) in Luxembourg (AFR grant PHD-09-158).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marion Le Texier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag Berlin Heidelberg

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Le Texier, M., Caruso, G. (2018). Aggregate and Disaggregate Dynamic Spatial Interaction Approaches to Modeling Coin Diffusion. In: Thill, JC. (eds) Spatial Analysis and Location Modeling in Urban and Regional Systems. Advances in Geographic Information Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37896-6_9

Download citation

Publish with us

Policies and ethics