Skip to main content

Large-Scale Energy Infrastructure Optimization: Breakthroughs and Challenges of CO2 Capture and Storage (CCS) Modeling

  • Chapter
  • First Online:
Spatial Analysis and Location Modeling in Urban and Regional Systems

Part of the book series: Advances in Geographic Information Science ((AGIS))

Abstract

Secure, sustainable, and cost-effective energy development will be one of the greatest global challenges in coming decades. This development will include an extensive range of energy resources including coal, conventional and unconventional oil and natural gas, wind, solar, biofuels, geothermal, and nuclear. CO2 capture and storage (CCS) infrastructure is a key example; meaningful CCS in the US could involve capturing CO2 from hundreds of CO2 sources, including coal-fired and natural gas power plants, and transporting a volume of CO2 greater than US oil consumption. Here, we highlight breakthroughs and future challenges for CCS infrastructure optimization and modeling. We start with the evolution of CCS infrastructure modeling from early attempts to represent the capture (sources), transport (network), and storage (sinks) of CO2, through to the integration of more advanced spatial optimization (or location-allocation) approaches including mixed integer-linear programming. We then highlight key future challenges and opportunities, including the representation of significant uncertainties throughout the CCS supply chain and the ability to represent policy and business decisions into CCS infrastructure optimization. Finally, we examine the role that next-generation CCS infrastructure modeling can have in wider massive-scale energy network investments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allinson, W. G., Nguyen, D. N., & Bradshaw, J. (2003a). Dealing with carbon dioxide–Threat or opportunity-The economics of geological storage of CO2 in Australia. APPEA Journal-Australian Petroleum Production and Exploration Association, 43, 623–636.

    Google Scholar 

  • Allinson, W. G., Nguyen, D. N., & Bradshaw, J. (2003b). The economics of geological storage of CO2 in Australia. APPEA Journal, 623.

    Google Scholar 

  • Bachu, S., Bonijoly, D., Bradshaw, J., Burruss, R., Holloway, S., Christensen, N. P., & Mathiassen, O. M. (2007). CO2 storage capacity estimation: Methodology and gaps. International Journal of Greenhouse Gas Control, 1, 430–443. http://www.sciencedirect.com/science/article/B483WP-434PB475MY-431/432/433c432dd437f435d420d413dd5377fa87713e87710b87716f.

    Article  Google Scholar 

  • BCG. (2008). Carbon capture and storage: A solution to the problem of carbon emissions (p. 11). Boston: Boston Consulting Group.

    Google Scholar 

  • BEG. (2000). Carbon-dioxide sequestration. http://www.beg.utexas.edu/environqlty/co2seq/co2data.htm. Carbon Dioxide Sequestration – Study Areas.

  • Bernstein, L., Bosch, P., Canziani, O., Chen, Z., Christ, R., Davidson, O., Hare, W., Huq, S., Karoly, D., Kattsov, V. et al., 2007. Climate change 2007: Synthesis report. An Assessment of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Bock, B. (2002). Economic evaluation of CO2 storage and sink enhancement options (p. 476). Palo Alto/Muscle Shoals/Washington, DC: EPRI, TVA, U.S. DOE.

    Google Scholar 

  • Chandel, M. K., Pratson, L. F., & Williams, E. (2010). Potential economies of scale in CO(2) transport through use of a trunk pipeline. Energy Conversion and Management, 51, 2825–2834.

    Article  Google Scholar 

  • Ciferno, J. P., Litynski, J. L., & Plasynski, S. I. (2010). DOE/NETL carbon dioxide capture and storage RD&D roadmap (p. 78). National Energy Technology Laboratory.

    Google Scholar 

  • Craft, B. C., Hawkins, M., & Terry, R. E. (1991). Applied petroleum reservoir engineering. Prentice Hall, 0130398845%7 2.

    Google Scholar 

  • Dahowski, R. T., & Dooley, J. J. (2004). Carbon management strategies for US electricity generation capacity: A vintage-based approach. Energy 29, 1589–1598. http://www.sciencedirect.com/science/article/B1586V1582S-1584CC1587RP1583-J/1582/f1075aa1583d1581ec1597f1762e90278dd90227e90277cbf.

  • Dahowski, R. T., Li, X., Davidson, C. L., Wei, N., Dooley, J. J., & Gentile, R. H. (2009). A preliminary cost curve assessment of carbon dioxide capture and storage potential in China. Energy Procedia 1, 2849–2856. http://www.sciencedirect.com/science/article/B2984K-2844W2840SFYG-F2844/2842/a391538b391197ae311453f391538c0299724bf0299720a

  • Dooley, J. J., Dahowski, R. T., Davidson, C. L., Bachu, S., Gupta, N., & Gale, J. (2004). A CO2-storage supply curve for North America and its implications for the deployment of carbon dioxide capture and storage systems. In Proceedings of the seventh international conference on greenhouse gas control technologies. Amsterdam: Elsevier.

    Google Scholar 

  • Dooley, J. J., Dahowski, R. T., & Davidson, C. L. (2008). On the long-term average cost of CO2 transport and storage (p. 6). Richland: Pacific Northwest National Laboratory.

    Book  Google Scholar 

  • Eccles, J. K., Pratson, L., Newell, R. G., & Jackson, R. B. (2009). Physical and economic potential of geological CO2 storage in saline aquifers. Environmental Science & Technology, 43, 1962–1969.

    Article  Google Scholar 

  • Eccles, J. K., Pratson, L., Newell, R. G., & Jackson, R. B. (2011). The impact of geologic variability on capacity and cost estimates for storing CO2 in deep-saline aquifers. http://www.sciencedirect.com/science/article/pii/S0140988311002891. Energy Economics.

  • Eccles, J. K., Pratson, L., & Chandel, M. K. (2012). Effects of well spacing on geological storage site distribution costs and surface footprint. Environmental Science & Technology.

    Google Scholar 

  • EIA. (2007). The electricity market module of the national energy modeling system. Washington, DC: US EIA.

    Google Scholar 

  • Eiken, O., Ringrose, P., Hermanrud, C., Nazarian, B., Torp, T. A., & Høier, L. (2011). Lessons learned from 14 years of CCS operations: Sleipner, In Salah and Snøhvit. Energy Procedia, 4, 5541–5548. http://www.sciencedirect.com/science/article/pii/S1876610211008204.

    Article  Google Scholar 

  • EPA. (2008). Geological CO2 Sequestration Technology and Cost Analysis (p. 61). Washington, DC: EPA Office of Water.

    Google Scholar 

  • Han, J.-H., & Lee, I.-B. (2011). Development of a scalable and comprehensive infrastructure model for carbon dioxide utilization and disposal. Industrial & Engineering Chemistry Research, 50, 6297–6315.

    Article  Google Scholar 

  • Hendriks, C. A., & Blok, K. (1993). Underground storage of carbon dioxide. Energy Conversion and Management, 34, 949–957.

    Article  Google Scholar 

  • Hendriks, C., Graus, W., & van Bergen, F. (2004). Global carbon dioxide storage potential and costs. Utrecht: Ecofys.

    Google Scholar 

  • Herzog, H., Li, W., Zhang, H., Diao, M., Singleton, G., & Bohm, M. (2007). West coast regional carbon sequestration partnership: Source sink characterization and geographic information system based matching (p. 82). Cambridge, MA: Public Interest Energy Research (PIER) Program: California Energy Commission.

    Google Scholar 

  • Keating, G. N., Middleton, R. S., Stauffer, P. H., Viswanathan, H. S., Letellier, B. C., Pasqualini, D., Pawar, R. J., & Wolfsberg, A. V. (2010). Mesoscale carbon sequestration site screening and CCS infrastructure analysis†. Environmental Science and Technology, 45, 215–222. http://dx.doi.org/210.1021/es101470m.

    Article  Google Scholar 

  • Kemp, A. G., & Kasim, A. S. (2010). A futuristic least-cost optimisation model of CO2 transportation and storage in the UK/UK continental shelf. Energy Policy, 38, 3652–3667.

    Article  Google Scholar 

  • Koide, H., Tazaki, Y., Noguchi, Y., Nakayama, S., Iijima, M., Ito, K., & Shindo, Y. (1992). Subterranean containment and long-term storage of carbon dioxide in unused aquifers and in depleted natural gas reservoirs. Energy Conversion and Management, 33, 619–626. http://www.sciencedirect.com/science/article/B616V612P-497B619ND-MS/612/612e615def618cd597dc5859b5850b5859c5855e5852c5912.

    Article  Google Scholar 

  • Koide, H., Shindo, Y., Tazaki, Y., Iijima, M., Ito, K., Kimura, N., & Omata, K. (1997). Deep sub-seabed disposal of CO2 – The most protective storage. Energy Conversion and Management, 38, S253–S258. http://www.sciencedirect.com/science/article/B256V252P-254DS259V240-251H/252/7303021b7303057a7303029b7303024fa5196636979789c5196636979754.

    Article  Google Scholar 

  • Kuby, M. J., Bielicki, J. M., & Middleton, R. S. (2011a). Optimal spatial deployment of CO2 capture and storage given a price on carbon. International Regional Science Review, 34, 285–305.

    Article  Google Scholar 

  • Kuby, M. J., Middleton, R. S., Bielicki, J. M. (2011b). Analysis of cost savings from networking pipelines in CCS infrastructure systems. In: J. Gale, C. Hendriks, W. Turkenberg (Eds.), 10th international conference on greenhouse gas control technologies, pp. 2808–2815.

    Google Scholar 

  • McCoy, S. T., & Rubin, E. S. (2008). An engineering-economic model of pipeline transport of CO2 with application to carbon capture and storage. International Journal of Greenhouse Gas Control, 2, 219–229. http://www.sciencedirect.com/science/article/B283WP-214R215G218M216-214/212/9979191aebc9979106d9941927bf9979147ee9979195ff9979743e.

    Article  Google Scholar 

  • McKinsey Climate Change Initiative. (2008). Carbon capture & storage: Assessing the economics. McKinsey & Company.

    Google Scholar 

  • Mendelevitch, R., Herold, J., Oei, P.-Y., & Tissen, A. (2010). CO2 highways for Europe: Modelling a carbon capture, transport and storage infrastructure for Europe (CEPS Working Document No. 340).

    Google Scholar 

  • Metz, B., Davidson, O., De Coninck, H., Loos, M., & Meyer, L. (2005). IPCC special report on carbon dioxide capture and storage. Working Group III of the Intergovernmental Panel on Climate Change, Cambridge.

    Google Scholar 

  • Michael, K., Golab, A., Shulakova, V., Ennis-King, J., Allinson, G., Sharma, S., & Aiken, T. (2010). Geological storage of CO2 in saline aquifers-A review of the experience from existing storage operations. International Journal of Greenhouse Gas Control, 4, 659–667.

    Article  Google Scholar 

  • Middleton, R. S. (2013). A new optimization approach to energy network modeling: Anthropogenic CO2 capture coupled with enhanced oil recovery. International Journal of Energy Research. https://doi.org/10.1002/er.2993.

  • Middleton, R. S., & Bielicki, J. M. (2009). A scalable infrastructure model for carbon capture and storage: SimCCS. Energy Policy, 37, 1052–1060.

    Article  Google Scholar 

  • Middleton, R. S., & Brandt, A. R. (2013). Using infrastructure optimization to reduce greenhouse gas emissions from oil sands extraction and processing. Environmental Science and Technology. https://doi.org/10.1021/es3035895.

  • Middleton, R. S., & Eccles, J. K. (2013). The complex future of CO2 capture and storage: Variable electricity generation and fossil fuel power. Applied Energy, 108, 66–73.

    Article  Google Scholar 

  • Middleton, R. S., Bielicki, J. M., Keating, G. N., & Pawar, R. J. (2011). Jumpstarting CCS using refinery CO2 for enhanced oil recovery. In: J. Gale, C. Hendriks, W. Turkenberg (Eds.), 10th international conference on greenhouse gas control technologies, pp. 2185–2191.

    Google Scholar 

  • Middleton, R. S., Keating, G. N., Stauffer, P. H., Jordan, A. B., Viswanathan, H. S., Kang, Q. J., Carey, J. W., Mulkey, M. L., Sullivan, E. J., Chu, S. P., Esposito, R., & Meckel, T. A. (2012a). The cross-scale science of CO2 capture and storage: from pore scale to regional scale. Energy & Environmental Science, 5, 7328–7345.

    Article  Google Scholar 

  • Middleton, R. S., Kuby, M. J., & Bielicki, J. M. (2012b). Generating candidate networks for optimization: The CO2 capture and storage optimization problem. Computers, Environment and Urban Systems, 36, 18–29.

    Article  Google Scholar 

  • Middleton, R. S., Kuby, M. J., Wei, R., Keating, G. N., & Pawar, R. J. (2012c). A dynamic model for optimally phasing in CO2 capture and storage infrastructure. Environmental Modelling & Software, 37, 193–205.

    Article  Google Scholar 

  • Middleton, R. S., Keating, G. N., Viswanathan, H. S., Stauffer, P. H., & Pawar, R. J. (2012d). Effects of geologic reservoir uncertainty on CO2 transport and storage infrastructure. International Journal of Greenhouse Gas Control, 8, 132–142.

    Article  Google Scholar 

  • Middleton, R. S., Keating, G. N., Viswanathan, H. S., Stauffer, P. H., & Pawar, R. J. (2012e). Effects of geologic reservoir uncertainty on CO2 transport and storage infrastructure. International Journal of Greenhouse Gas Control, 8, 132–142. 1750–5836.

    Article  Google Scholar 

  • Morbee, J., Serpa, J., & Tzimas, E. (2012). Optimised deployment of a European CO2 transport network. International Journal of Greenhouse Gas Control, 7, 48–61.

    Article  Google Scholar 

  • Nemeth, K., Hill, G., Sams, K., Hovorka, S. D., Ripepi, N., Pashin, J., Hills, D., Rhudy, R., Trautz, R. C., Esposito, P. R., Gandee, J. E., Locke, C. D., Lindner, J., Han, F.-X., Luthe, J. C., Conrad, M., & McCollum, C. (2011). Southeast regional carbon sequestration partnership (SECARB) Phase II final report (p. 622). Norcross: Southern States Energy Board.

    Google Scholar 

  • Parker, N. (2004). Using natural gas transmission pipeline costs to estimate hydrogen pipeline costs. UC Davis: Institute of Transportation Studies. Retrieved from: http://www.escholarship.org/uc/item/9m40m75r

  • Petroleum Technology Research Centre. (2011). Weyburn-Midale research project.

    Google Scholar 

  • Phillips, B. R., & Middleton, R. S. (2012). SimWIND: A geospatial infrastructure model for optimizing wind power generation and transmission. Energy Policy, 43, 291–302.

    Article  Google Scholar 

  • Research Institute of Innovative Technology for the, E. (2007). Nagaoka project: Demonstration test and monitoring at the Iwanohara test site. http://www.rite.or.jp/English/lab/geological/demonstration.html

  • Rubin, E. S., Rao, A. B., & Chen, C. (2005). Comparative assessments of fossil fuel power plants with CO2 capture and storage. In E. S. Rubin, D. W. Keith & C. F. Gilboy (Eds.), 7th international conference on greenhouse gas control technologies (pp. 285–294). Elsevier Science.

    Google Scholar 

  • Rubin, E. S., Chen, C., & Rao, A. B. (2007). Cost and performance of fossil fuel power plants with CO2 capture and storage. Energy Policy, 35, 4444–4454.

    Article  Google Scholar 

  • Stauffer, P. H., Viswanathan, H. S., Pawar, R. J., & Guthrie, G. D. (2009). A system model for geologic sequestration of carbon dioxide. Environmental Science and Technology, 43, 565–570.

    Article  Google Scholar 

  • Stauffer, P. H., Keating, G. N., Middleton, R. S., Viswanathan, H. S., Berchtold, K. A., Singh, R. P., Pawar, R. J., & Mancino, A. (2011). Greening coal: Breakthroughs and challenges in carbon capture and storage. Environmental Science & Technology, 45, 8597–8604.

    Article  Google Scholar 

  • USDOE. (2010). Carbon sequestration atlas of the United States and Canada Online (III). Morgantown: National Energy Technology Laboratory.

    Google Scholar 

  • van den Broek, M., Brederode, E., Ramirez, A., Kramers, L., van der Kuip, M., Wildenborg, T., Turkenburg, W., & Faaij, A. (2010). Designing a cost-effective CO2 storage infrastructure using a GIS based linear optimization energy model. Environmental Modelling & Software, 25, 1754–1768.

    Article  Google Scholar 

  • Viswanathan, H. S., Pawar, R. J., Stauffer, P. H., Kaszuba, J. P., Carey, J. W., Olsen, S. C., Keating, G. N., Kavetski, D., & Guthrie, G. D. (2008). Development of a hybrid process and system model for the assessment of wellbore leakage at a geologic CO2 sequestration site. Environmental Science & Technology, 42, 7280–7286.

    Article  Google Scholar 

  • Wildenborg, T., Gale, J., Hendriks, C., Holloway, S., Brandsma, R., Kreft, E., & Lokhorst, A. (2004, September). Cost curves for CO 2 storage: European sector. In Proceedings of the 7th international conference on greenhouse gas control technologies (GHGT-7), pp. 5–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard S. Middleton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag Berlin Heidelberg

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eccles, J.K., Middleton, R.S. (2018). Large-Scale Energy Infrastructure Optimization: Breakthroughs and Challenges of CO2 Capture and Storage (CCS) Modeling. In: Thill, JC. (eds) Spatial Analysis and Location Modeling in Urban and Regional Systems. Advances in Geographic Information Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37896-6_14

Download citation

Publish with us

Policies and ethics