Skip to main content

Spatial Uncertainty Challenges in Location Modeling with Dispersion Requirements

  • Chapter
  • First Online:
Spatial Analysis and Location Modeling in Urban and Regional Systems

Part of the book series: Advances in Geographic Information Science ((AGIS))

Abstract

Geographic information systems provide the capacity to digitally create, store, manipulate, analyze and display various types of spatial information. While these functionalities enable handling of spatial data in a much more rapid and precise way than traditional paper-based approaches, uncertainties nevertheless remain in digital information and are not likely to ever be completely eliminated. Location modeling, as an important spatial analytical approach, must therefore confront the various uncertainties and errors in spatial data. In this chapter we detail multi-objective models structured to account for data uncertainty in support of location siting when spatial dispersion is a prerequisite. These models explicitly incorporate facets of data uncertainty and can be applied in a manner that enables evaluation of uncertainty impacts with statistical confidence. Solution approaches are discussed, along with the case study setting, to demonstrate how these models address spatial uncertainty in a context supporting facility location planning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aerts, J. C. J. H., Goodchild, M. F., & Heuvelink, G. (2003). Accounting for spatial uncertainty in optimization with spatial decision support systems. Transactions in GIS, 7(2), 211–230.

    Article  Google Scholar 

  • Barahona, F., Weintraub, A., & Epstein, R. (1992). Habitat dispersion in forest planning and the stable set problem. Operations Research, 40, 14–21.

    Article  Google Scholar 

  • Church, R. L., & Garfinkel, R. S. (1978). Locating an obnoxious facility on a network. Transportation Science, 12(2), 107–118.

    Article  Google Scholar 

  • Church, R. L., & Murray, A. T. (2009). Business site selection, location analysis, and GIS. New York: Wiley.

    Google Scholar 

  • Curtin, K. M., & Church, R. L. (2006). A family of location models for multiple-type discrete dispersion. Geographical Analysis, 38(3), 248–270.

    Article  Google Scholar 

  • Downs, J. A., Gates, R. J., & Murray, A. T. (2008). Estimating carrying capacity for sandhill cranes using habitat suitability and spatial optimization models. Ecological Modelling, 214(2-4), 284–292.

    Article  Google Scholar 

  • Erkut, E., & Neuman, S. (1989). Analytical models for locating undesirable facilities. European Journal of Operational Research, 40(3), 275–291.

    Article  Google Scholar 

  • Erkut, E., ReVelle, C., & Ãœlküsal, Y. (1996). Integer-friendly formulations for the r-separation problem. European Journal of Operational Research, 92(2), 342–351.

    Article  Google Scholar 

  • FGDC. (1998) Geospatial positioning accuracy standards. National standard for spatial data accuracy. Available at http://www.fgdc.gov/standards/projects/FGDC-standards-projects/accuracy

  • Gamarnik, D., & Goldberg, D. A. (2010). Randomized greedy algorithms for independent sets and matchings in regular graphs: Exact results and finite girth corrections. Combinatorics, Probability and Computing, 19(01), 61–85.

    Article  Google Scholar 

  • Goodchild, M. F. (1993). Data models and data quality: Problems and prospects. In M. F. Goodchild, B. O. Parks, & L. T. Steyaert (Eds.), Visualization in geographical information systems (pp. 141–149). New York: Wiley.

    Google Scholar 

  • Goodchild, M. F., & Gopal, S. (1989). The accuracy of spatial databases. London: Taylor&Francis.

    Google Scholar 

  • Goodchild, M. F., Shortridge, A. M., & Fohl, P. (1999). Encapsulating simulation models with geospatial data sets. In K. Lowell & A. Jaton (Eds.), Spatial accuracy assessment: Land information uncertainty in natural resources (pp. 123–129). Ann Arbor: Ann Arbor Press.

    Google Scholar 

  • Goovaerts, P. (2006). Geostatistical analysis of disease data: Visualization and propagation of spatial uncertainty in cancer mortality risk using Poisson kriging and p-field simulation. International Journal of Health Geographics, 5(1), 7.

    Article  Google Scholar 

  • Goycoolea, M., Murray, A. T., Barahona, F., Epstein, R., & Weintraub, A. (2005). Harvest scheduling subject to maximum area restrictions: Exploring exact approaches. Operations Research, 53(3), 490–500.

    Article  Google Scholar 

  • Greenwalt, C.R., & Shultz, M.E. (1962). Principles of error theory and cartographic applications. ACIC Technical Report (Vol. 96), St. Louis, MO.

    Google Scholar 

  • Griffith, D. A., Millones, M., Vincent, M., Johnson, D. L., & Hunt, A. (2007). Impacts of positional error on spatial regression analysis: A case study of address locations in Syracuse, New York. Transactions in GIS, 11(5), 655–679.

    Article  Google Scholar 

  • Grubesic, T., & Murray, A. (2008). Sex offender residency and spatial equity. Applied Spatial Analysis and Policy, 1(3), 175–192.

    Article  Google Scholar 

  • Grubesic, T. H., & Pridemore, W. A. (2011). Alcohol outlets and clusters of violence. International Journal of Health Geographics, 10(1), 30.

    Article  Google Scholar 

  • Grubesic, T. H., Murray, A. T., Pridemore, W. A., Philip-Tabb, L., Liu, Y., & Wei, R. (2012). Alcohol beverage control, privatization and the geographic distribution of alcohol outlets. BMC Public Health, 12, 1015.

    Article  Google Scholar 

  • Gurobi. (2017). http://www.gurobi.com

  • Heuvelink, G. B. M. (1998). Error propagation in environmental modelling with GIS. London: Taylor and Francis.

    Google Scholar 

  • Heuvelink, G. B. M., Peter, A. B., & Stein, A. (1989). Propagation of errors in spatial modelling with GIS. International Journal of Geographical Information System, 3(4), 303–322.

    Article  Google Scholar 

  • Hochbaum, D. S., & Pathria, A. (1997). Forest harvesting and minimum cuts: A new approach to handling spatial constraints. Forest Science, 43(4), 544–554.

    Google Scholar 

  • Hunter, G. J., & Goodchild, M. F. (1996). Communicating uncertainty in spatial databases. Transactions in GIS, 1(1), 13–24.

    Article  Google Scholar 

  • Kuby, M. J. (1987). Programming models for facility dispersion: The p-dispersion and maximum dispersion problems. Geographical Analysis, 19(4), 315–329.

    Article  Google Scholar 

  • Leung, Y., & Yan, J. (1998). A locational error model for spatial features. International Journal of Geographical Information Science, 12(6), 607–620.

    Article  Google Scholar 

  • Longley, P. A., Goodchild, M. F., Maguire, D., & Rhind, D. (2015). Geographic information science and systems (4th ed.). London: Wiley.

    Google Scholar 

  • Malizia, N. (2013). The effect of data inaccuracy on tests of space-time interaction. Transactions in GIS, 17(3), 426–451.

    Article  Google Scholar 

  • Mathai, A. M., & Provost, S. B. (1992). Quadratic forms in random variables: Theory and applications. New York: M. Dekker.

    Google Scholar 

  • Moon, I. D., & Chaudhry, S. S. (1984). An analysis of network location problems with distance constraints. Management Science, 30, 290–307.

    Article  Google Scholar 

  • Murray, A. T. (1999). Spatial restrictions in harvest scheduling. Forest Science, 45(1), 45–52.

    Google Scholar 

  • Murray, A. T. (2003). Site placement uncertainty in location analysis. Computers, Environment and Urban Systems, 27(2), 205–221.

    Article  Google Scholar 

  • Murray, A. T. (2010). Advances in location modeling: GIS linkages and contributions. Journal of Geographical Systems, 12(3), 335–354.

    Article  Google Scholar 

  • Murray, A. T., & Church, R. L. (1997). Facets for node packing. European Journal of Operational Research, 101(3), 598–608.

    Article  Google Scholar 

  • Murray, A. T., & Kim, H. (2008). Efficient identification of geographic restriction conditions in anti-covering location models using GIS. Letters in Spatial and Resource Sciences, 1(2–3), 159–169.

    Article  Google Scholar 

  • Murray, A. T., Church, R. L., Gerrard, R. A., & Tsui, W. S. (1998). Impact models for siting undesirable facilities. Papers in Regional Science, 77(1), 19–36.

    Article  Google Scholar 

  • Pennsylvania Liquor Control Board (PLCB). (2008). Information booklet for retail license, LCB-119.

    Google Scholar 

  • Tong, D., & Murray, A. T. (2012). Spatial optimization in geography. Annals of the Association of American Geographers, 102(6), 1290–1309.

    Article  Google Scholar 

  • Wei, R., & Murray, A. T. (2012). An integrated approach for addressing geographic uncertainty in spatial optimization. International Journal of Geographical Information Science, 26(7), 1231–1249.

    Article  Google Scholar 

  • Wei, R., & Murray, A. T. (2015). Spatial uncertainty in harvest scheduling. Annals of Operations Research, 232(1), 275–289.

    Google Scholar 

  • Yao, J., & Murray, A. T. (2013). Continuous surface representation and approximation: Spatial analytical implications. International Journal of Geographical Information Science, 27(5), 883–897.

    Article  Google Scholar 

  • Zeller, R. E., Achabal, D. D., & Brown, L. A. (1980). Market penetration and locational conflict in franchise systems. Decision Sciences, 11(1), 58–80.

    Article  Google Scholar 

Download references

Acknowledgements

The first author would like to acknowledge support through the 2012-13 Benjamin H. Stevens Graduate Fellowship in Regional Science as well as an Arizona State University Graduate College Completion Fellowship. This material is also based upon work supported by the National Science Foundation under grants 0924001 and 0922737. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ran Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag Berlin Heidelberg

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wei, R., Murray, A.T. (2018). Spatial Uncertainty Challenges in Location Modeling with Dispersion Requirements. In: Thill, JC. (eds) Spatial Analysis and Location Modeling in Urban and Regional Systems. Advances in Geographic Information Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37896-6_12

Download citation

Publish with us

Policies and ethics