Skip to main content

Hybrid Correlation-Neural Network Synergy for Gait Signal Classification

  • Chapter

Abstract

This chapter presents a thorough discussion on the development of a robust algorithm for pathological classification of human gait signals. The technique involves the extraction of time and frequency domain features of the correlograms obtained by cross-correlating the gait signals with a reference, and subsequently employing a pre-trained Elman’s recurrent neural network (ERNN) for automatic identification of healthy subjects and those with neurological disorder, and also the type of disorder. To assess the performance of the algorithm, stance, swing, and double support intervals (expressed as percentages of stride) of 63 subjects, either healthy, or suffering from Parkinson’s disease (PD), Huntington’s disease (HD), or Amyotrophic Lateral Sclerosis (ALS), have been processed by the proposed algorithm for a period of approximately 300 s. The performances of ERNNs are also compared with those already reported for back propagation neural network (BPNN), learning vector quantization (LVQ), and least-square support vector machine (LS-SVM) based classification algorithms. With time-domain features, the proposed modular ERNNs outshined the other classifiers by attaining 90.3–98.5 % classification accuracy for binary classification jobs, and an accuracy as high as 87.1 % for the four-class classification problem. With frequency-domain features, classification into healthy and pathological subjects has been studied, and in this case also, the best performance of 81.6 % mean accuracy was achieved employing ERNN.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Barton, J.G., Lees, A.: An application of neural networks for distinguishing gait patterns on the basis of hip-knee joint angle diagrams. Gait Posture 5, 28–33 (1997)

    Article  Google Scholar 

  2. Beers, H.E.: Gait Disorders. The Merck Manual of Geriatrics, 3rd edn. Merck Res. Lab, Rahway (2001). Chap. 21

    Google Scholar 

  3. Begg, R.K., Palaniswami, M., Owen, B.: Support vector machines for automated gait classification. IEEE Trans. Biomed. Eng. 52(5), 828–838 (2005)

    Article  Google Scholar 

  4. Bose, N.K., Liang, P.: Neural Network Fundamentals with Graphs, Algorithms and Applications. Tata McGraw-Hill Publishing Company limited, New Delhi (1998)

    Google Scholar 

  5. Boulgouris, N.V., Hatzinakos, D., Plataniotis, K.N.: Gait recognition: a challenging signal processing technology for biometric identification. IEEE Signal Process. Mag., 78–90 (2005)

    Google Scholar 

  6. Bracewell, R.N.: The Fourier Transform and Its Applications, 3rd edn. McGraw-Hill, New York (2000)

    Google Scholar 

  7. Chandaka, S., Chatterjee, A., Munshi, S.: Cross-correlation aided support vector machine classifier for classification of EEG signals. Expert Syst. Appl. 36, 1329–1336 (2009)

    Article  Google Scholar 

  8. Chandaka, S., Chatterjee, A., Munshi, S.: Support vector machines employing cross-correlation for emotional speech recognition. Measurement 42(4), 611–618 (2009)

    Article  Google Scholar 

  9. Cunado, D., Nixon, M.S., Carter, J.N.: Using gait as a biometric, via phase-weighted magnitude spectra. In: Proc. Int. Conf. Audio- and Video-Based Biometric Person Authentication, Crans-Montana, Switzerland. LNCS, vol. 1206, pp. 95–102 (1997)

    Google Scholar 

  10. Cutting, J., Kozlowski, L.: Recognizing friends by their walk: gait perception without familiarity cues. Bull. Psychon. Soc. 9(5), 353–356 (1977)

    Google Scholar 

  11. Davis, R.B.: Clinical gait analysis. IEEE Eng. Med. Biol. Mag., 35–40 (1988)

    Google Scholar 

  12. Delgado, M., Pegalajar, M., Cuéllar, M.: Mimetic evolutionary training for recurrent neural networks: an application to time-series prediction. Expert Syst. 23(2), 99–115 (2006)

    Article  Google Scholar 

  13. Dutta, S., Chatterjee, A., Munshi, S.: An automated hierarchical gait pattern identification tool employing cross-correlation-based feature extraction and recurrent neural network based classification. Expert Syst. 26(2), 202–217 (2009)

    Article  Google Scholar 

  14. Fildes, B.: Injuries Among Older People: Falls at Home and Pedestrian Accidents. Dove Publications, Melbourne (1994)

    Google Scholar 

  15. Giles, C., Sun, G., Chen, H., Lee, Y., Chen, D.: Higher order recurrent network and grammatical inference. Adv. Neural Inf. Process. Syst. 2, 380–387 (1990)

    Google Scholar 

  16. Hausdorff, J.M., Cudkowicz, M.E., Firtion, R., Wei, J.Y., Goldberger, L.A.: Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson’s disease and Huntington’s disease. Mov. Disord. 13(3), 428–437 (1998)

    Article  Google Scholar 

  17. Hausdorff, J.M., Lertratanakul, A., Cudkowicz, M.E., Peterson, A.L., Kaliton, D., Goldberger, A.L.: Dynamic markers of altered gait rhythm in amyotrophic lateral sclerosis. J. Appl. Physiol. 88(6), 2045–2053 (2000)

    Google Scholar 

  18. Haykin, S.: Neural Networks: A Comprehensive Foundation, 6th Indian Reprint edn. Pearson Education, Upper Saddle River (2004)

    Google Scholar 

  19. Huang, P.S., Harris, C.J., Nixon, M.S.: Visual surveillance and tracking of humans by face and gait recognition. In: Proc. 7th IFAC Symp. Artificial Intelligence in Real-Time Control, Grand Canyon National Park, AZ, pp. 43–44 (1998)

    Google Scholar 

  20. Johansson, G.: Visual perception of biological motion and a model for its analysis. Percept. Psychophys. 14(2), 201–211 (1973)

    Article  Google Scholar 

  21. Jordon, M.: Serial order: a parallel distributed processing approach. Inst. Cognitive Sci. ICS Rep. 8604, University of California, San Diego (1986)

    Google Scholar 

  22. Kecman, V.: Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models. MIT Press, Cambridge (2002)

    Google Scholar 

  23. Kohonen, T.: The self-organizing map. Proc. IEEE 78, 1464–1480 (1990)

    Article  Google Scholar 

  24. Kuppusamy, K., Lin, W., Haacke, E.M.: Statistical assessment of cross-correlation and variance methods and the importance of electrocardiogram gating in functional magnetic resonance imaging. Magn. Reson. Imaging 15(2), 169–181 (1997)

    Article  Google Scholar 

  25. Lai, D.T.H., Begg, R.K., Palaniswami, M.: Computational intelligence in gait research: a perspective on current applications and future challenges. IEEE Trans. Inf. Technol. Biomed. 13(5), 682–702 (2009)

    Google Scholar 

  26. Lee, S.W., Song, H.H.: A new recurrent neural network architecture for visual pattern recognition. IEEE Trans. Neural Netw. 8(2), 331–340 (1997)

    Article  MathSciNet  Google Scholar 

  27. Littlem, J., Boyd, J.: Recognizing people by their gait: the shape of motion. Int. J. Comput. Vis. 14(6), 83–105 (1998)

    Google Scholar 

  28. Mizuno-Matsu, Y., Motamedi, M.K., Webber, W.R., Lesser, R.P.: Wavelet-crosscorrelation analysis can help predict whether bursts of pulse stimulation will terminate after discharges. Clin. Neurophysiol. 113(1), 33–42 (2002)

    Article  Google Scholar 

  29. Mizuno-Matsumoto, Y., Motamedi, G.K., Webber, W.R.S., Ishii, R., Ukai, S., Kaishima, T., Shinosaki, K., Lesser, R.: Wavelet-crosscorrelation analysis of electrocorticography recordings from epilepsy. In: International Congress Series, vol. 1278, pp. 411–414. Elsevier Science, Amsterdam (2005)

    Google Scholar 

  30. Murase, H., Sakai, R.: Moving object recognition in eigenspace representation: gait analysis and lip reading. Pattern Recognit. Lett. 17(2), 155–162 (1996)

    Article  Google Scholar 

  31. Murphy, K.: Medical and functional status of adults with cerebral palsy. IEEE Trans. Inf. Theory 14(5), 734–743 (1968)

    Article  Google Scholar 

  32. Nigg, B.M., Fisher, V., Ronsky, J.L.: Gait characteristics as a function of age and gender. Gait Posture 2, 213–220 (1994)

    Article  Google Scholar 

  33. Niyogi, S.A., Adelson, E.H.: Analyzing and recognizing walking figures in xyt. In: Proc. Computer Vision and Pattern Recognition, Seattle, WA, vol. 2, pp. 469–474 (1994)

    Google Scholar 

  34. Ostrosky, K.M., VanSwearingen, J.M., Burdett, R.G., Gee, Z.: A comparison of gait characteristics in young and old subjects. Phys. Ther. 74, 637–646 (1994)

    Google Scholar 

  35. Physionet database. http://physionet.fri.uni-lj.si/physiobank/database/gaitndd/

  36. Pollack, J.B.: The induction of dynamical recognizers. Mach. Learn. 7, 227–252 (1991)

    Google Scholar 

  37. Roberts, M.: Signals and Systems—Analysis Using Transform Methods and MATLAB. Tata –McGraw-Hill Publishing Company limited, New Delhi (2003)

    Google Scholar 

  38. Signal Processing Toolbox for Use with MATLAB, User Guide, 2nd edn. Pearson Education (2001)

    Google Scholar 

  39. Suljagic, S., Rajsic, N., Ivanus, J., Bozovic, Z., Kalauzi, A., Rapajic, D., Nedovic, G.: P197 the predictive role of t-histograms of crosscorrelation r-coefficients in the analysis of ictal EEG activity. Electroencephalogr. Clin. Neurophysiol. 99(4), 320 (1996)

    Google Scholar 

  40. Süt, N., Şenocak, M.: Assessment of the performances of multilayer perceptron neural networks in comparison with recurrent neural networks and two statistical methods for diagnosing coronary artery disease. Expert Syst. 24(3), 131–142 (2007)

    Article  Google Scholar 

  41. The Mathworks, Natwick, MA: Signal Processing Toolbox for Use with MATLAB, User Guide (2001)

    Google Scholar 

  42. The Mathworks, Natwick, MA: Neural Network Toolbox for Use with MATLAB (2002)

    Google Scholar 

  43. Therapy and equipment needs of people with cerebral palsy and like disabilities in Australia (disability series). Tech. rep., Australian Institute of Health and Welfare, Canberra, A.C.T., Australia (2006)

    Google Scholar 

  44. Übeyli, E.: Comparison of different classification algorithms in clinical decision-making. Expert Syst. 24(1), 17–31 (2007)

    Article  Google Scholar 

  45. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  46. Wilson, R.S., Schneider, J.A., Beckett, L.A., Evans, D.A., Bennett, D.A.: Progression of gait disorder and rigidity and risk of death in older persons. Neurology 58(12), 1815–1819 (2002)

    Article  Google Scholar 

  47. Winter, D.: The Biomechanics and Motor Control of Human Gait: Normal, Elderly, and Pathological. Univ. Waterloo Press, Waterloo (1991)

    Google Scholar 

  48. Zhou, S., Xu, L.: Dynamic recurrent neural networks for a hybrid intelligent decision support system for the metallurgical industry. Expert Syst. 16(4), 240–247 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saibal Dutta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dutta, S., Chatterjee, A., Munshi, S. (2013). Hybrid Correlation-Neural Network Synergy for Gait Signal Classification. In: Chatterjee, A., Nobahari, H., Siarry, P. (eds) Advances in Heuristic Signal Processing and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37880-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37880-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37879-9

  • Online ISBN: 978-3-642-37880-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics