Skip to main content

Mercury Speciation Transformation During Coal Combustion

  • Chapter
  • 433 Accesses

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

Abstract

During the coal combustion process and the cooling process of flue gas, mercury experiences a complex physical and chemical transformation. Various factors will affect the speciation distribution of mercury in flue gas. Such factors include the type of coal being used, temperature, reaction conditions, flue gas composition, fly ash composition, and so on.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Senior C.L., et al. Gas-phase transformations of mercury in coal-fired power plants. Fuel Processing Technology, 68(3): 197–213, 2000.

    Article  Google Scholar 

  2. Carpi A. Mercury from combustion sources: A review of the chemical species emitted and their transport in the atmosphere. Water, Air and Soil Pollution, 98: 241–254, 1997.

    CAS  Google Scholar 

  3. Widmer N.C., West J. Thermochemical Study of Mercury Oxidation in Utility Boiler Fuel Gases. 93rd Annual Meeting, Air&Waste Management Association, Salt Lake City, Utah, 2000.

    Google Scholar 

  4. Lee T.G. Hg Reactions in the presence of chlorine species: homogeneous gas phase and heterogeneous gas-solid phase. Journal of the Air & Waste Management Association, 52: 1316–1323, 2002.

    Article  CAS  Google Scholar 

  5. Dunham G.E., DeWall R.A., Senior C.L. Fixed-bed studies of the interactions between mercury and coal combustion fly ash. Fuel Processing Technology, 82(2–3): 197–213, 2003.

    Article  CAS  Google Scholar 

  6. Sliger R.N., Kramlicha J.C., Marinov N.M. Towards the development of a chemical kinetic model for the homogeneous oxidation of mercury by chlorine species. Fuel Processing Technology, (65–66): 423–438, 2000.

    Google Scholar 

  7. Niksa S. Kinetic modeling of homogeneous mercury oxidation: the importance of NO and H2O in predicting oxidation in coal-derived system. Environmental Science & Technology, 35: 3701–3706, 2001.

    Article  CAS  Google Scholar 

  8. Liu J., Wand M.H., Zheng C.G., et al. Reaction mechanism of mercury and gases during coal combustion. Journal of Engineering Thermophysics, 24(1): 161–164, 2003.

    Google Scholar 

  9. Mamani-Paco R.M., Helble J.J. Bench-Scale Examination of Mercury Oxidation under Non-Isothermal Conditions. 93rd Annual Meeting & Exhibition, Air & Waste Management Association, Salt Lake City, Utah, June 18–22, 2000.

    Google Scholar 

  10. Dajnak D., Lockwood F.C. Modelling of toxic heavy metal mercury partitioning from pulverized fuel combustion. IFRF Combustion Journal, Article Number 200103, 2001.

    Google Scholar 

  11. Hall B., Schager P., Lindqvist O. Chemical reactions of mercury in combustion flue gases. Water, Air & Soil Pollution, 56: 3–14, 1991.

    Article  CAS  Google Scholar 

  12. Matsumura Y. Adsorption of mercury vapor on the surface of activated carbons modified by oxidation or iodization. Atmospheric Environment, 8: 1321–1327, 1974.

    Article  CAS  Google Scholar 

  13. Senior C.L., Morency J.R. Prediction of Mercury Speciation in Coal-Fired Power Plant Flue Gas: A Fundamental Study. Managing Hazardous Air Pollutants, Fourth International Conference, Washington, DC, November 12–14, 1997.

    Google Scholar 

  14. Schager P. The Behavior of Mercury in Flue Gases. Department of Inorganic Chemistry, University of Goteburg, Goteburg, Sweden, 1990.

    Google Scholar 

  15. Liu Y.H. The Migration of Trace Elements in Coal Combustion Process Changes in Behavior. Huazhong University of Science and Technology, 2002.

    Google Scholar 

  16. Ren J.L. Experimental and Theoretical Study on Mercury Transformation and Sorbents Adsorption in Simulated Combustion Flue Gases. College of Mechanical and Energy Engineering, Zhejiang University, Hangzhou, 71–73. 2003.

    Google Scholar 

  17. U.S. Environmental Protection Agency. U.S. EPA Clean Air Mercury Rule. Washington, DC, 2005. Available at http://www.epa.gov.

    Google Scholar 

  18. He S., et al. Mercury oxidation over a vanadian-based selective catalytic reduction catalyst. Energy & Fuels, 23: 253–259, 2009.

    Article  CAS  Google Scholar 

  19. Zhou J.S., et al. Investigation on mercury emission during coal combustion process. Combustion Science and Technology, 8(2): 103–108, 2002.

    CAS  Google Scholar 

  20. Wu X.J. Research on Mercury Control with Semi-Dry Adsorption During Coal Combustion. College of Mechanial and Energy Engineering, Zhejiang University, Hangzhou, 4–5, 2004.

    Google Scholar 

  21. Hall B., et al. Mercury chemistry in simulated flue gases related to waste incineration conditions. Environmental Science and Technology, 24(1): 108–111, 1990.

    Article  CAS  Google Scholar 

  22. Frandsen F., et al. Trace element partitioning during coal gasification. Fuel, 20(3): 115–138, 1996.

    Google Scholar 

  23. Bob H. Chemical reactions of mercury in combustion flue gases. Water, Air and Soil Pollution, 56(4): 3–14, 1991.

    Google Scholar 

  24. Qiao Y., et al. The oxidation kinetics of mercury in Hg/O/H/Cl systems. Proceedings of the CSEE, 22(12): 138–141, 2002.

    Google Scholar 

  25. Wang Q.H., et al. Investigation on mercury emission during coal combustion process. Thermal Power Engineering, 17(6): 547–550, 2002.

    CAS  Google Scholar 

  26. Hall B., et al. The gas phase oxidation of elemental mercury by ozone. Water, Air and Soil Pollution, (80): 301–315, 1995.

    Google Scholar 

  27. Musmarra A.L.D., et al. Adsorption of mercuric chloride vapors from incinerator flue gases on calcium hydroxide particle. Combustion Science Technology, 93(4): 277–289, 1993.

    Google Scholar 

  28. Sliger R.N., et al. Kinetic Investigation of the High-Temperature Oxidation of Mercury by Chlorine Species. Fall Meeting, Western State Section/The Combustion Institute, Seattle, 1998.

    Google Scholar 

  29. Fransden F., et al. Rasmussen. Progress Energy Combustion Science, 1994.

    Google Scholar 

  30. Zhao Y., et al. Research reviews of mercury control technology in the coal-fired power plants. Electric Power Technology and Environmental Protection, 26(2): 31–33, 2001.

    Google Scholar 

  31. Jones C. Consensus on air toxics eludes industry to date. Power, 138: 51–59, 1994.

    Google Scholar 

  32. Chow W., Miller M.J., Torrens I.M. Pathways of trace elements in power plants: interim research results and implications. Fuel Processing Technology, 39: 5–20, 1994.

    Article  CAS  Google Scholar 

  33. Hou W.H., et al. Numerical simulation of homogeneous mercury oxidation by chemical kinetic coupled with computation fluid dynamics. Proceedings of the CSEE, 30(5): 23–27, 2010.

    Google Scholar 

  34. Sliger R.N., Kramlicha J.C., Marinov N.M. Towards the development of a chemical kinetic model for the homogeneous oxidation of mercury by chlorine species. Fuel Processing Technology, (65–66): 423–438, 2000.

    Google Scholar 

  35. Roesler J.F., et al. Kinetic interactions of CO, NO x , and HCl emissions in post combustion gases. Combustion and Flame, February, 100(3): 495–504, 1995.

    Article  CAS  Google Scholar 

  36. Edwards J.R., et al. A study of gas-phase mercury speciation using detailed chemical kinetics. Air & Waste Management Association, 51: 869–877, 2001.

    Article  CAS  Google Scholar 

  37. Xu M.H., et al. Modeling of homogeneous mercury speciation using detailed chemical kinetics. Combustion and Flame, 132: 208–218, 2003.

    Article  CAS  Google Scholar 

  38. Gullett B.K. Sorbent Injection for Dioxm/Furan Prevention and Mercury Control. Multipollutant Sorbent Reactivity Workshop, Research Triangle Park, NC, July 1994.

    Google Scholar 

  39. Bauich D.L.C., et al. Evaluated kinetic data for combustion modelling. Journal of Physical and Chemical Reference Data, 21: 411–429, 1992.

    Article  Google Scholar 

  40. Atkinson R.B., et al. Evaluated kinetic, photochemical and heterogeneous data for atmospheric chemistry: supplement V, IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry. Journal of Physical and Chemical Reference Data, 26: 521–1011, 1997.

    Article  CAS  Google Scholar 

  41. Tsang W.H., et al. Chemical kinetic data base for combustion chemistry. Part I. Methane and related compounds. Journal of Physical and Chemical Reference Data, 15, 1986.

    Google Scholar 

  42. Tsang W.H., et al. Chemical kinetic data base for propellant combustion. I. Reactions involving NO, NO2, HNO, HNO2, HCN and N2O. Journal of Physical and Chemical Reference Data, 20: 609–663, 1991.

    Article  CAS  Google Scholar 

  43. Sommar J.H., et al. On the gas phase reactions between volatile biogenic mercury species and the nitrate radical. Journal of Atmospheric Chemistry, 27: 233–247, 1997.

    Article  CAS  Google Scholar 

  44. Adusei G.Y.F., et al. A high-temperature photochemistry study of the H + HCl → H2 + Cl reaction from 298 to 1192 K. Journal of Physical Chemistry, 97, 1993.

    Google Scholar 

  45. Mahmud K.K., et al. A high-temperature photochemical kinetics study of the O + HCl reaction from 350 to 1480 K. Journal of Physical Chemistry, 94: 2994–2998, 1990.

    Article  CAS  Google Scholar 

  46. Ravishankara A.R.W., et al. Kinetic study of the reaction of OH with HCl from 240–1055 K. International Journal of Chemical Kinetics, 17, 1985.

    Google Scholar 

  47. Bradley J.N.W., et al. Electron spin resonance study of the reaction of O(3P) atoms with chlorine and nitrosyl chloride. Journal of the Chemical Society, Faraday Transactions, 1: 69, 1973.

    Google Scholar 

  48. Ongstad A.P.B., et al. Studies of reactions of importance in the stratosphere. VI. Temperature dependence of the reactions O + NO2 → NO + O2 and O + ClO → Cl + O2. Journal of Physical Chemistry, 85, 1986.

    Google Scholar 

  49. Atkinson R.B., et al. Summary of Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry. 1–56, 2001.

    Google Scholar 

  50. Atkinson R.B., et al. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III-gas phase reactions of inorganic halogens. Atmospheric Chemistry and Physics, 7: 981–1191, 2007.

    Article  CAS  Google Scholar 

  51. Adusei G.Y.F., et al. A high-temperature photochemistry study of the H + HCl → H2 + Cl reaction from 298 to 1192 K. Journal of Physical Chemistry, 97: 1409–1412, 1993.

    Article  CAS  Google Scholar 

  52. Wang L.L., et al. Theoretical Study and Rate Constant Calculation of the Cl + HOCl and H + HOCl Reactions. Journal of Physical Chemistry A, 107: 4921–4928, 2003.

    Article  CAS  Google Scholar 

  53. Boodaghians R.B.H., et al. Kinetics of the reactions of the hydroxyl radical with molecular chlorine and bromine. Journal of the Chemical Society, Faraday Transactions, 2: 83, 1987.

    Google Scholar 

  54. DeMore W.B.S., et al. Chemical kinetics and photochemical data for use in stratospheric modeling. Evaluation number 12. JPL Publication, 97(4): 1–266, 1997.

    Google Scholar 

  55. Song T.T.S., et al. Recombination reactions of atomic chlorine in compressed gases. 2. Geminate and nongeminate recombinations and photolysis quantum yields with argon pressure up to 180 bar. Journal of Physical Chemistry, 100: 13554–13560, 1996.

    Article  CAS  Google Scholar 

  56. Leu M.T., et al. Rate constants for reactions between atmospheric reservoir species. 1. HCl. Journal of Physical Chemistry, 93: 5778–5784, 1989.

    Article  CAS  Google Scholar 

  57. Shaw R. Estimation of rate constants as a function of temperature for the reactions W + XYZ = WX + YZ, where W, X, Y, and Z are H or O atoms. International Journal of Chemical Kinetics, 9, 1977.

    Google Scholar 

  58. Glaenzer K.T., et al. HO2 formation in shock heated HNO3-NO2 mixtures. Berichte der Bunsengesellschaft für physikalische Chemie, 79, 1975.

    Google Scholar 

  59. Howard C.J. Temperature dependence of the reaction HO2 + NO → OH + NO2. Journal of Chemical Physics, 91, 1979.

    Google Scholar 

  60. Chakraborty D.R., et al. Theoretical study of the OH + NO2 reaction: formation of nitric acid and the hydroperoxyl radical. Journal of Chemical Physics, 231: 39–49, 1998.

    CAS  Google Scholar 

  61. Lloyd A.C. Evaluated and estimated kinetic data for phase reactions of the hydroperoxyl radical. International Journal of Chemical Kinetics, 6: 169–228, 1974.

    Article  CAS  Google Scholar 

  62. Vardanyan I.A.S., et al. Kinetics and mechanism of formaldehyde oxidation-II. Combustion and Flame, 22: 153–159, 1974.

    Article  CAS  Google Scholar 

  63. Burrows J.P.C., et al. Atmospheric reactions of the HO2 radical studied by laser magnetic resonance spectroscopy. Proceedings of the Royal Society of London A, 368: 463–481, 1980.

    Article  Google Scholar 

  64. Gonzalez C.T., et al. Kinetics of the reaction between OH and HO2 on the triplet potential energy surface. Journal of Physical Chemistry, 96: 1767–1774, 1992.

    Article  CAS  Google Scholar 

  65. Warnatz J. Rate coefficients in the C/H/O system. Combustion Chemistry, 1984.

    Google Scholar 

  66. Glavas S.T., et al. Reaction between ozone and hydrogen sulfide. Journal of Physical Chemistry, 79, 1975.

    Google Scholar 

  67. Woiki D.R., et al. Kinetics of the high-temperature H2S decomposition. Journal of Physical Chemistry, 98: 12958–12963, 1994.

    Article  CAS  Google Scholar 

  68. Phillips L.F.S., et al. Mass-spectrometric studies of atomic reactions. V. The reaction of nitrogen atoms with NO2. Journal of Chemical Physics, 42: 3171–3174,1995.

    Article  Google Scholar 

  69. Armitage J.W.C., et al. Studies of the reaction between nitrogen dioxide and sulfur dioxide. Combustion and Flame, 16, 1971.

    Google Scholar 

  70. Bozzelli J.W.C., et al. Analysis of the reactions H + N2O and NH + NO: pathways and rate constants over a wide range of temperature and pressure. Symposium (International) on Combustion, 25: 965–974, 1994.

    Article  Google Scholar 

  71. Yuan E.L.S., et al. Kinetics of the decomposition of nitric oxide in the range 700–1800 °C. Journal of Physical Chemistry, 63: 952–956, 1959.

    Article  CAS  Google Scholar 

  72. Mebel A.M.L., et al. Reactions of NO x with nitrogen hydrides. International Reviews in Physical Chemistry, 16: 249–266, 1997.

    Article  CAS  Google Scholar 

  73. Michael J.V.S., et al. Rate constants for H + O2 + M→ HO2 + M in seven bath gases. Journal of Physical Chemistry A, 106: 5297–5313, 2002.

    Article  CAS  Google Scholar 

  74. Cohen N.W., et al. Chemical kinetic data sheets for high-temperature chemical reactions. Journal of Physical Chemistry Reference Data, 12, 1983.

    Google Scholar 

  75. Jachimowski C.J.H., et al. Shock-tube study of the initiation process in the hydrogen-oxygen reaction. Combustion and Flame, 17, 1971.

    Google Scholar 

  76. Miller J.A. Nonstatistical effects and detailed balance in quasiclassical trajectory calculations of the thermal rate coefficient for O + OH → O2 + H. Journal of Chemical Physics, 84, 1986.

    Google Scholar 

  77. Bauich D.L.C., et al. An assessment of rate data for high-temperature systems. Symp. Int. Combust. Proc, 14: 107–118, 1973.

    Article  Google Scholar 

  78. Bauich D.L.C., et al. Evaluated kinetic data for combusion modelling. Supplement I. Journal of Physical Chemistry Reference Data, 23: 847–1033, 1994.

    Article  Google Scholar 

  79. Avramenko L.I., et al. Reactions of nitrogen atoms communication 6. Rate constant and mechanism of the elementary reaction of nitrogen atoms with carbon dioxide. Bulletin of the Academy of Sciences of the USSR, Division of Chemical Science (Engl. Transi), 501–503, 1967.

    Google Scholar 

  80. Pagsberg P.B., et al. Kinetics of the gas phase reaction OH + NO(+M) → HONO(+M) and the determination of the UV absorption cross sections of HONO. Chemical Physics Letters, 272: 383–390, 1997.

    Article  CAS  Google Scholar 

  81. Boughton J.W.K., et al. Theoretical study of the reaction of hydrogen with nitric acid: ab initio MO and TST/RRKM calculations. Journal of Chemical Physics, 214: 219–227, 1997.

    CAS  Google Scholar 

  82. Svensson R.L., et al. A kinetic study of the decomposition of HNO3 and its reaction with NO. International Journal of Chemical Kinetics, 20, 1988.

    Google Scholar 

  83. Smith I.W.M.Z., et al. Rate measurements of OH by resonance absorption. IV. Reactions of OH with NH3 and HNO3. Proc. Symp. Chem. Kinet. Data Upper Lower Atmos, 1974, 1975.

    Google Scholar 

  84. Connell P.S.H., et al. Kinetics study of the reaction HO + HNO3. International Journal of Chemical Kinetics, 17, 1985.

    Google Scholar 

  85. Inomata S.W., et al. Rate constants for the reactions of NH2 and HNO with atomic oxygen at temperatures between 242 and 473 K. Journal of Physical Chemistry A, 103: 5023–5031, 1999.

    Article  CAS  Google Scholar 

  86. He Y.L., et al. Effects of nitric oxide on the thermal decomposition of methyl nitrite: overall kinetics and rate constants for the HNO + HNO and HNO + 2NO reactions. International Journal of Chemical Kinetics, 24: 743–760, 1992.

    Article  CAS  Google Scholar 

  87. Soto M.R.P., et al. Ab initio variational transition-state-theory reaction-rate calculations for the gas-phase reaction H + HNO → H2 + NO. Journal of Chemical Physics, 97: 287–7296, 1992.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhou, J., Luo, Z., Zhu, Y., Fang, M. (2013). Mercury Speciation Transformation During Coal Combustion. In: Mercury Emission and its Control in Chinese Coal-Fired Power Plants. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37874-4_4

Download citation

Publish with us

Policies and ethics