Skip to main content

The Saccharification Step: Trichoderma Reesei Cellulase Hyper Producer Strains

  • Chapter
  • First Online:
Lignocellulose Conversion

Abstract

One of the major applications of cellulases is to produce fermentable sugars from lignocellulosic biomass for biofuels production. The filamentous fungus Trichoderma reesei is known to be hyper producer of cellulases and hemicellulases and it is widely used for commercial scale production of these enzymes using novel fermentation techniques. Some of the T. reesei industrial strains produce over 100 g/l of cellulases. However, there are still technical and economic constraints to the development of cheap commercial cellulase production process. Here, we bring together and discuss the results on T. reesei as cellulase producer, the different kinds of enzymes it expresses, recent genomic, genetic, and metabolic engineering approaches that have helped to improve the biomass degrading enzyme mixture and the strategies adopted to reduce the cost of enzymes during fermentation process. Current efforts and some future perspectives for reducing the cost of enzymes by using cheaper substrates, recycling enzyme during the hydrolysis and fermentation process, and on-site enzyme production in the biorefinery facility are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahamed A, Vermette P (2008) Culture-based strategies to enhance cellulase enzyme production from Trichoderma reesei RUT-C30 in bioreactor culture conditions. Biochem Eng J 40:399–407

    Article  CAS  Google Scholar 

  • Ahamed A, Vermette P (2010) Effect of mechanical agitation on the production of cellulases by Trichoderma reesei RUT-C30 in a draft-tube airlift bioreactor. Biochem Eng J 49:379–387

    Article  CAS  Google Scholar 

  • Akel E, Metz B, Seiboth B, Kubicek CP (2009) Molecular regulation of Arabinan and L-Arabinose metabolism in Hypocrea jecorina (Trichoderma reesei). Eukaryot Cell 8:1837–1844

    Article  PubMed  CAS  Google Scholar 

  • Amore A, Faraco V (2012) Potential of fungi as category I consolidated bio-processing organisms for cellulosic ethanol production. Renew Sustain Energy Rev 16:3286–3301

    Article  CAS  Google Scholar 

  • Aro N, Saloheimo A, Ilmen M, Penttila M (2001) ACEII, a novel transcriptional activator involved in regulation of cellulase and xylanase genes of Trichoderma reesei. J Biol Chem 276:24309–24314

    Article  PubMed  CAS  Google Scholar 

  • Aro N, Ilmen M, Saloheimo A, Penttila M (2003) ACEI of Trichoderma reesei is a repressor of cellulase and xylanase expression. Appl Environ Microbiol 69:56–65

    Article  PubMed  CAS  Google Scholar 

  • Aro N, Pakula T, Penttila M (2005) Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiol Rev 29:719–739

    Article  PubMed  CAS  Google Scholar 

  • Bailey M, Tähtiharju J (2003) Efficient cellulase production by Trichoderma reesei in continuous cultivation on lactose medium with a computer-controlled feeding strategy. Appl Microbiol Biotechnol 62:156–162

    Article  PubMed  CAS  Google Scholar 

  • Bailey MJ, Buchert J, Viikari L (1993) Effect of pH on production of xylanase by Trichoderma reesei on xylan-and cellulose-based media. Appl Microbiol Biotechnol 40:224–229

    Article  CAS  Google Scholar 

  • Balan V, Kumar S, Bals B, Chundawat SPS, Jin M, Dale BE (2012) Biochemical and thermochemical conversion of switchgrass to biofuels. In: Monti A (ed) Switchgrass: a valuable biomass crop for energy, chapter 7. Springer-Verlag London Ltd., pp 153–186

    Google Scholar 

  • Beilen JBV, Li Z (2002) Enzyme technology: an overview. Curr Opin Biotechnol 13:338–344

    Article  PubMed  CAS  Google Scholar 

  • Bigelow M, Wyman CE (2002) Cellulase production on bagasse pretreated with hot water. Appl Biochem Biotech 98–100:921–934

    Article  Google Scholar 

  • Bouws H, Wattenberg A, Zorn H (2008) Fungal secretomes–nature’s toolbox for white biotechnology. Appl Microbiol Biotechnol 80:381–388

    Article  PubMed  CAS  Google Scholar 

  • Brown D, Zainudeen M (1977) Growth kinetics and cellulase biosynthesis in the continuous culture of Trichoderma viride. Biotechnol Bioeng 19(7):941–958

    Article  PubMed  CAS  Google Scholar 

  • Carroll A, Somerville C (2009) Cellulosic biofuels. Annu Rev Plant Biol 60:165–182

    Article  PubMed  CAS  Google Scholar 

  • Chandel AK, Chandrasekhar C, Silva MB, daSilva SS (2012) The realm of cellulases in biorefinery development. Crit Rev Biotechnol 32:187–202

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Hayn M, Esterbauer H (1992) Purification and characterization of two extracellular β-glucosidase from Trichoderma reesei. Biochimica et Biophysica Acta (BBA)-Protein Struct Mole Enzymol 1121:54–60

    Google Scholar 

  • Chen XZ, Xu SQ, Zhu MS, Cui LS, Zhu H, Liang YX, Zhang ZM (2010) Site-directed mutagenesis of an Aspergillus niger xylanase B and its expression, purification and enzymatic characterization in Pichia pastoris. Process Biochem 45(1):75–80

    Article  CAS  Google Scholar 

  • Cherry JR, Fidantsef AL (2003a) Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14:438–443

    Article  PubMed  CAS  Google Scholar 

  • Cherry JR, Fidantsef AL (2003b) Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14:438–443

    Article  PubMed  CAS  Google Scholar 

  • Chundawat SP, Vismeh R, Sharma LN, Humpula JF, da Sousa Costa L, Chambliss CK, Jones AD, Balan V, Dale BE (2010) Multifaceted characterization of cell wall decomposition products formed during ammonia fiber expansion (AFEX) and dilute acid based pretreatments. Bioresource Technol 101:8429–8438

    Article  CAS  Google Scholar 

  • Chundawat SPS, Beckham GT, Himmel ME, Dale BE (2011) Deconstruction of lignocellulosic biomass to fuels and chemicals. In: Prausnitz JM (ed) Annual review of chemical and biomolecular engineering, vol 2, pp 121–145

    Google Scholar 

  • Colina A, Ferrer A, Urribarri L (2009) Producción de celulasas por Trichoderma reesei Rut C-30 en diferentes substratos celulósicos. Rev Téc Ing Univ Zulia 32:152–159

    CAS  Google Scholar 

  • Cox P, Paul G, Thomas C (1998) Image analysis of the morphology of filamentous micro-organisms. Microbiology 144:817–827

    Article  PubMed  CAS  Google Scholar 

  • Dashtban M, Buchkowski R, Qin W (2011) Effect of different carbon sources on cellulase productionby Hypocrea jecorina (Trichoderma reesei) strains. Int J Biochem Mol Biol 2:274–286

    PubMed  CAS  Google Scholar 

  • Divne C, Ståhlberg J, Teeri TT, Jones TA (1998) High-resolution crystal structures reveal how a cellulose chain is bound in the 50 Å long tunnel of cellobiohydrolase I from Trichoderma reesei. J Mol Biol 275:309–325

    Article  PubMed  CAS  Google Scholar 

  • Elkins JG, Raman B, Keller M (2010) Engineered microbial systems for enhanced conversion of lignocellulosic biomass. Curr Opin Biotechnol 21:657–662

    Article  PubMed  CAS  Google Scholar 

  • Esterbauer H, Steiner W, Labudova I, Hermann A, Hayn M (1991) Production of Trichoderma cellulase in laboratory and pilot scale. Bioresource Technol 36:51–65

    Article  CAS  Google Scholar 

  • Ferreira Susana MP, Duarte AP, Queiroz JA, Domingues FC (2009) Influence of buffersystems on Trichoderma reesei Rut C-30 morphology and cellulase production. Electron J Biotechnol 12. ISSN: 0717-3458

    Google Scholar 

  • Fitzpatrick M, Champagne P, Cunningham MF, Whitney RA (2010) A biorefineryprocessing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresource Technol 101:1822–8915

    Google Scholar 

  • Fowler T, Brown RD (1992) The BGL1 gene encoding extracellular beta-glucosidase from Trichoderma Reesei is required for rapid induction of the cellulase complex. Mol Microbiol 6:3225–3235

    Article  PubMed  CAS  Google Scholar 

  • Galbe M, Zacchi G (1993) Simulation of processes for conversion of lignocellulosics. In: Saddler JN (ed) Bioconversion of forest and agricultural plant residues, CAB International, Wallingford, pp 291–342

    Google Scholar 

  • Goedegebuur F, Dankmeyer L, Gualfetti P, Kelemen B, Larenas E, Neefe F, Teunissen P, Mitchinson C (2005) Improving the thermal stability of cellobiohydrolases I (Cel7A) from T. reesei by site directed evolution. J Biotechnol 118:S130–S130

    Google Scholar 

  • Gomez LD, Steele-King CG, McQueen-Mason SJ (2008) Sustainable liquid biofuels from biomass:the writing’s on the wall. New Phytol 178:473–485

    Article  PubMed  CAS  Google Scholar 

  • Grimm LH, Kelly S, Krull R, Hempel DC (2005) Morphology and productivity of filamentous fungi. Appl Microbiol Biotechnol 69:375–384

    Article  PubMed  CAS  Google Scholar 

  • Gritzali M, Brown Ross D (1979) The cellulase system of Trichoderma In: Hydrolysis of cellulose: mechanisms of enzymatic and acid catalysis, vol 181, American Chemical Society, Washington, DC, pp 237–260

    Google Scholar 

  • Guangtao Z, Seiboth B, Wen C, Yaohua Z, Xian L, Wang TH (2010) A novel carbon source-dependent genetic transformation system for the versatile cell factory Hypocrea jecorina (anamorph Trichoderma reesei). Fems Microbiol Lett 303(1):26–32.

    Google Scholar 

  • Gusakov A (2011) Alternatives to Trichoderma reesei in biofuel production. Trends Biotechnol 29:419–425

    Article  PubMed  CAS  Google Scholar 

  • Haltrich D, Nidetzky B, Kulbe KD, Steiner W, Župančič S (1996) Production of fungal xylanases. Bioresource Technol 58:137–161

    Article  CAS  Google Scholar 

  • Han ZL, Han SY, Zheng SP, Lin Y (2009) Enhancing thermostability of a Rhizomucor miehei lipase by engineering a disulfide bond and displaying on the yeast cell surface. Appl Microbiol Biotechnol 85:117–126

    Article  PubMed  CAS  Google Scholar 

  • Hendy Na, Wilke CR, Blanch HW (1984) Enhanced cellulase production in fed-batch culture of Trichoderma reesei C30. Enzyme Microb Technol 6:73–77

    Article  CAS  Google Scholar 

  • Herrmann MC, Vrsanska M, Jurickova M, Hirsch J, Biely P, Kubicek CP (1997a) The beta-D-xylosidase of Trichoderma reesei is a multifunctional beta-D-xylan xylohydrolase. Biochem J 321(Pt 2):375

    PubMed  CAS  Google Scholar 

  • Herrmann MC, Vrsanska M, Jurickova M, Hirsch J, Biely P, Kubicek CP (1997b) The beta-D-xylosidase of Trichoderma reesei is a multifunctional beta-D-xylan xylohydrolase. Biochem J 321:375–381

    PubMed  CAS  Google Scholar 

  • Himmel ME, Ding S-Y, Johnsons DK, Adney WS, Nimlos MR, Brady JW et al (2007) Biomass recalcitrance: engineering plants and enzymes for biofuel production. Science 315:804–807

    Article  PubMed  CAS  Google Scholar 

  • Hokanson CA, Cappuccilli G, Odineca T, Bozic M, Behnke CA, Mendez M, Coleman WJ, Crea R (2011) Engineering highly thermostable xylanase variants using an enhanced combinatorial library method. Protein Eng Des Sel 24:597–605

    Article  PubMed  CAS  Google Scholar 

  • Hrmová M, Biely P, Vršanská M (1986) Specificity of cellulase and β-xylanase induction in Trichoderma reesei QM 9414. Arch Microbiol 144:307–311

    Article  Google Scholar 

  • Huber GW, Dale BE (2009) Grassoline at the pump. Sci Am 301:52–59

    Article  PubMed  CAS  Google Scholar 

  • Ilmen M, Saloheimo A, Onnela ML, Penttila ME (1997) Regulation of cellulase gene expression in the filamentous fungus Trichoderma reesei. Applied and Environmental Microbiology 63(4):1298–1306

    Google Scholar 

  • Inglin M, Feinberg BA, Loewenberg JR (1980) Partial purification and characterization of a new intracellular beta-glucosidase of Trichoderma reesei. Biochem J 185:515

    PubMed  CAS  Google Scholar 

  • Jackson MA, Talburt DE (1988) Mechanism for β-glucosidase release into cellulose-grown Trichoderma reesei culture supernatants. Exp Mycol 12:203–216

    Article  CAS  Google Scholar 

  • Jin M, Gunawan C, Uppugundla N, Balan V, Dale BE (2012) A novel integrated biological process for cellulosic ethanol production featuring high ethanol productivity, enzyme recycling, and yeast cells reuse. Energy Environ Sci 5:7168–7175

    Article  CAS  Google Scholar 

  • Juge N, Svensson B, Williamson G (1998) Secretion, purification, and characterisation of barley alpha-amylase produced by heterologous gene expression in Aspergillus niger. Appl Microbiol Biotechnol 49:385–392

    Article  PubMed  CAS  Google Scholar 

  • Juhasz T, Szengyel Z, Reczey K, Siika-Aho M, Viikari L (2005) Characterization of cellulases and hemicellulases produced by Trichoderma reesei on various carbon sources. Process Biochem 40:3519–3525

    Article  CAS  Google Scholar 

  • Juhász T, Szengyel Z, Szijártó N, Réczey K (2004) Effect of pH on cellulase production of Trichoderma ressei RUT C30. Appl Biochem Biotechnol 113:201–211

    Article  PubMed  Google Scholar 

  • Karlsson J, Saloheimo M, Siika-aho M, Tenkanen M, Penttila M, Tjerneld F (2001) Homologous expression and characterization of Cel61A (EG IV) of Trichoderma reesei. Eur J Biochem 268:6498–6507

    Article  PubMed  CAS  Google Scholar 

  • Karumanchi RSMS, Doddamane SN, Sampangi C, Todd PW (2002) Field-assisted extraction of cells, particles and macromolecules. Trends Biotechnol 20:72–78

    Article  PubMed  CAS  Google Scholar 

  • Kawamori M, Morikawa Y, Takasawa S (1986) Induction and production of cellulases by L-Sorbose in Trichoderma Reseei. Appl Microbiol Biotechnol 24:449–453

    CAS  Google Scholar 

  • Keller K, Friedman T, Boxman A (2001) The bioseparation needs of tomorrow. Trends Biotechnol 19:438–441

    Article  PubMed  CAS  Google Scholar 

  • Kubicek CP (1987) Involvement of a conidial endoglucanase and a plasma-membrane-bound beta-glucosidase in the induction of endoglucanase synthesis by cellulose in Trichodermareesei. J Gen Microbiol 133:1481–1487

    PubMed  CAS  Google Scholar 

  • Kubicek CP, Mikus M, Schuster A, Schmoll M, Seiboth B (2009) Metabolic engineering strategies for the improvement of cellulase production by Hypocrea jecorina. Biotechnol Biofuels 2:19

    Article  PubMed  CAS  Google Scholar 

  • Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Indian Microbiol Biotechnol 35:377–391

    Article  CAS  Google Scholar 

  • Ladisch MR, Hong J, Voloch M, Tsao GT (1981) Cellulase kinetics. In: Wolfe R, Hollaender A, Rabson R, Rodgers P, San Pietro A, Valentine R (eds) Trends in the biology of fermentation for fuels and chemicals. Plenum Publishing, New York, pp 55–83

    Chapter  Google Scholar 

  • Lau MW, Bals BD, Chundawat SPS, Jin M, Gunawan C, Balan V, Jones D, Dale BE (2012) An integrated paradigm for cellulosic biorefineries: utilization of lignocellulosic biomass as self-sufficient feedstocks for fuel, food precursors and saccharolytic enzyme production. Energy Environ Sci 5:7100–7110

    Article  CAS  Google Scholar 

  • Lee YH, Fan LT (1983) Kinetic studies of enzymatic hydrolysis of insoluble cellulose: (II) analysis of extended hydrolysis times. Biotechnol Bioeng 25:939–966

    Article  PubMed  CAS  Google Scholar 

  • Lee D, Alex H, Yu C, Saddler JN (1995) Evaluation of cellulase recycling strategies for the hydrolysis of lignocellulosic substrates. Biotechnol Bioeng 45:328–336

    Article  PubMed  CAS  Google Scholar 

  • Lejeune R, Nielsen J, Baron G (1995) Influence of pH on the morphology ofTrichoderma reeseiqm 9414 in submerged culture. Biotechnol Lett 17:341–344

    Article  CAS  Google Scholar 

  • Lin HL, Li WG, Guo CH, Qu SH, Ren NQ (2011) Advances in the study of directed evolution for cellulases. Front Environ Sci Eng China 5:519–525

    Article  Google Scholar 

  • Lo C-M, Zhang Q, Lee P, Ju L-K (2005) Cellulase production by Trichoderma reesei using sawdust hydrolysate. Appl Biochem Biotechnol 121–124:561–573

    Article  PubMed  Google Scholar 

  • Lo C-M, Zhang Q, Callow NV, Ju L-K (2010) Cellulase production by continuous culture of Trichoderma reesei Rut C30 using acid hydrolysate prepared to retain more oligosaccharides for induction. Bioresource Technol 101:717–723

    Article  CAS  Google Scholar 

  • Lyko H, Deerberg G, Weidner E (2009) Coupled production in biorefineries combined use of biomass as a source of energy, fuels and materials. J Biotechnol 142:78–86

    Article  PubMed  CAS  Google Scholar 

  • Lynd LR, van Zyl WH, McBride JE, Laser M (2005) Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 16:577–583

    Article  PubMed  CAS  Google Scholar 

  • Mach RL, Seiboth B, Myasnikov A, Gonzalez R, Strauss J, Harkki AM, Kubicek CP (1995) The bgl1 gene of trichoderma-reesei QM-9414 encodes an extracellular, cellulose-inducible beta-glucosidase involved in cellulase induction by sophorose. Molecular Microbiology 16(4):687–697

    Google Scholar 

  • Mach RL, Seiboth B, Myasnikov A, Gonzalez R, Strauss J, Harkki AM, Kubicek CP (2006) The bgl1 gene of Trichoderma reesei QM 9414 encodes an extracellular, cellulose-inducible ß-glucosidase involved in cellulase induction by sophorose. Mol Microbiol 16:687–697

    Article  Google Scholar 

  • Mach-Aigner AR, Pucher ME, Steiger MG, Bauer GE, Preis SJ, Mach RL (2008) Transcriptional regulation of xyr1, encoding the main regulator of the xylanolytic and cellulolytic enzyme system in Hypocrea jecorina. Appl Environ Microbiol 74:6554–6562

    Article  PubMed  CAS  Google Scholar 

  • Mandels M (1975) Microbial sources of cellulase. Biotechnol Bioeng Symp 5:81–105

    Google Scholar 

  • Mandels M, Weber J (1969) The production of cellulases. Adv Chem Ser 95:391–414

    Article  CAS  Google Scholar 

  • Mandels M, WebeR J, Parizek R (1971) Enhanced cellulase production by a mutant of Trichoderma viride. Appl Microbiol 21:152

    PubMed  CAS  Google Scholar 

  • Margolles-Clark E, Tenkanen M, Söderlund H, Penttilä M (1996) Acetyl xylan esterase from Trichoderma reesei contains an active-site serine residue and a cellulose-binding domain. Eur J Biochem 237:553–560

    Google Scholar 

  • Margolles-Clark E, Tenkanen M, Luonteri E, Penttilä M (1996b) Three α-Galactosidase genes of Trichoderma reesei cloned by expression in yeast. Eur J Biochem 240:104–111

    Article  PubMed  CAS  Google Scholar 

  • Margolles-Clark E, Ihnen M, Penttilà M (1997) Expression patterns of ten hemicellulase genes of the filamentous fungus Trichoderma reesei on various carbon sources. J Biotechnol 57:167–179

    Article  CAS  Google Scholar 

  • Martinez D, Berka RM, Henrissat B et al (2008a) Genome sequencing and analysis of the biomass degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26:553–560

    Article  PubMed  CAS  Google Scholar 

  • Martinez D, Berka RM et al (2008b) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26:553–560

    Article  PubMed  CAS  Google Scholar 

  • Menon V, Rao M (2012) Trends in bioconversion of lignocellulose: biofuels, platform chemicals and biorefinery concept. Prog Energy Combust Sci 38:522–550

    Article  CAS  Google Scholar 

  • Merino ST, Cherry J (2007) Progress and challenges in enzyme development for biomass utilization. Adv Biochem Eng/Biotechnol 108:95–120

    Article  CAS  Google Scholar 

  • Messner R, Kubicek CP (1991) Carbon source control of cellobiohydrolase I and II formation by Trichoderma reesei. Appl Environ Microbiol 57:630–635

    PubMed  CAS  Google Scholar 

  • Messner R, Gruber F, Kubicek CP (1988) Differential regulation of synthesis of multiple forms of specific endoglucanases by Trichoderma reesei QM9414. J Bacteriol 170:3689–3693

    PubMed  CAS  Google Scholar 

  • Metz B, Kossen NWF (1977) The growth of molds in the form of pellets–a literature review. Biotechnol Bioeng 19:781–799

    Article  CAS  Google Scholar 

  • Montenecourt B, Eveleigh D (1977) Preparation of mutants of Trichoderma reesei with enhanced cellulase production. Appl Environ Microbiol 34:777–782

    PubMed  CAS  Google Scholar 

  • Montenecourt BS, Eveleigh DE (1979) Selective screening methods for the isolation of high yielding cellulase mutants of Trichoderma reesei. In: Hydrolysis of cellulose: mechanisms of enzymatic and acid catalysis, vol 181, American Chemical Society, Washington, DC, pp 289–301

    Google Scholar 

  • Mukataka S, Kobayashi N, Sato S, Takahashi J (1988) Variation in cellulases constituting components from Trichoderma reesei with agitation intensity. Biotechnol Bioeng 32:760–763

    Article  PubMed  CAS  Google Scholar 

  • Nakari-Setala T, Paloheimo M, Kallio J, Vehmaanpera J, Penttila M, Saloheimo M (2009) Genetic modification of carbon catabolite repression in Trichoderma reesei for improved protein production. Appl Environ Microbiol 75:4853–4860

    Article  PubMed  CAS  Google Scholar 

  • Nakazawa H, Okada K, Onodera T, Ogasawara W, Okada H, Morikawa Y (2009) Directed evolution of endoglucanase III (Cel12A) from Trichoderma reesei. Appl Microbiol Biotechnol 83:649–657

    Article  PubMed  CAS  Google Scholar 

  • Nogawa M, Goto M, Okada H, Morikawa Y (2001) L-Sorbose induces cellulase gene transcription in the cellulolytic fungus Trichoderma reesei. Curr Genet 38:329–334

    Article  PubMed  CAS  Google Scholar 

  • Ohara H (2003) Biorefinery: a mini review. Appl Microbiol Biotechnol 62:474–477

    Article  PubMed  CAS  Google Scholar 

  • Ouyang J, Yan M, Kong D, Xu L (2006) A complete protein pattern of cellulase and hemicellulase genes in the filamentous fungus Trichoderma reesei. Biotechnol J 1:1266–1274

    Article  PubMed  CAS  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B, Szengyel Z, Zacchi G, Rèczey K (1997) Simultaneous detoxification and enzyme production of hemicellulose hydrolysates obtained after steam pretreatment. Enzyme Microb Technol 20:286–293

    Article  CAS  Google Scholar 

  • Papagianni M (2004) Fungal morphology and metabolite production in submerged mycelial processes. Biotechnol Adv 22(3):189–259

    Google Scholar 

  • Peberdy JF (1994) Protein secretion in filamentous fungi—trying to understand a highly productive black-box. Trends Biotechnol 12:50–57

    Article  PubMed  CAS  Google Scholar 

  • Penttilä M, Lehtovaara P, Nevalainen H, Bhikhabhai R, Knowles J (1986) Homology between cellulase genes of Trichoderma reesei: complete nucleotide sequence of the endoglucanase I gene. Gene 45:253–263

    Article  PubMed  Google Scholar 

  • Peterson R, Nevalainen H (2012) Trichoderma reesei RUT-C30-thirty years of strain improvement. Microbiology-Sgm 158:58–68

    Article  CAS  Google Scholar 

  • Pluschkell S, Hellmuth K, Rinas U (1996) Kinetics of glucose oxidase excretion by recombinant Aspergillus niger. Biotechnol Bioeng 51:215–220

    Article  PubMed  Google Scholar 

  • Portnoy T, Margeot A, Seidl-Seiboth V, Le Crom S, Ben Chaabane F, Linke R, Seiboth B, Kubicek CP (2011) Differential regulation of the cellulase transcription factors XYR1, ACE2, and ACE1 in Trichoderma reesei strains producing high and low levels of cellulase. Eukaryot Cell 10:262–271

    Article  PubMed  CAS  Google Scholar 

  • Poutanen K (1988) An α-L-arabinofuranosidase of Trichoderma reesei. J Biotechnol 7:271–281

    Article  CAS  Google Scholar 

  • Pucher ME, Steiger MG, Mach RL, Mach-Aigner AR (2011) A modified expression of the major hydrolase activator in Hypocrea jecorina (Trichoderma reesei) changes enzymatic catalysis of biopolymer degradation. Catal Today 167:122–128

    Article  CAS  Google Scholar 

  • Punt PJ, Veldhuisen G, Vandenhondel C (1994) Protein targeting and secretion in filamentous fungi. Antonie Van Leeuwenhoek Int J Gen Mole Microbiol 65:211–216

    Article  CAS  Google Scholar 

  • Qu Y, Zhao X, Gao P et al (1991) Cellulase production from spent sulfite liquor and papermill waste fiber. Appl Biochem Biotechnol 28–29:363–368

    PubMed  Google Scholar 

  • Rauscher R, Wurleitner E, Wacenovsky C, Aro N, Stricker AR, Zeilinger S, Kubicek CP, Penttila M, Mach RL (2006) Transcriptional regulation of xyn1, encoding xylanase I, in Hypocrea jecorina. Eukaryot Cell 5:447–456

    Article  PubMed  CAS  Google Scholar 

  • Reese E, Maguire A (1969) Surfactants as stimulants of enzyme production by microorganisms. Appl Microbiol 17:242–245

    PubMed  CAS  Google Scholar 

  • Rodriguez-Gomez D, Lehmann L, Schultz-Jensen N, Bjerre AB, Hobley TJ (2012) Examining the potential of plasma-assisted pretreated wheat straw for enzyme production by Trichoderma reesei. Appl Biochem Biotechnol 166:2051–2063

    Article  PubMed  CAS  Google Scholar 

  • Saarelainen R, Paloheimo M, Fagerström R, Suominen PL, Nevalainen KMH (1993) Cloning, sequencing and enhanced expression of the Trichoderma reesei endoxylanase II (pI 9) gene xln2. Mole Gen Genet MGG 241:497–503

    Article  CAS  Google Scholar 

  • Saloheimo M, Lehtovaara P et al (1988) EGIII, a new endoglucanase from Trichoderma reesei: the characterization of both gene and enzyme. Gene 63:11–21

    Google Scholar 

  • Saloheimo A, Henrissat B, Hoffrén A-M, Teleman O, Penttilä M (1994) A novel, small endoglucanase gene, egl5, from Trichoderma reesei isolated by expression in yeast. Mole Microbiol 13:219–228

    Google Scholar 

  • Saloheimo M, Nakari-SetäLä T, Tenkanen M, Penttilä M (1997) cDNA cloning of a Trichoderma reesei cellulase and demonstration of endoglucanase activity by expression in yeast. Eur J Biochem 249:584–591

    Article  PubMed  CAS  Google Scholar 

  • Saloheimo A, Aro N, Ilmen M, Penttila M (2000) Isolation of the ace1 gene encoding a Cys(2)-His(2) transcription factor involved in regulation of activity of the cellulase promoter cbh1 of Trichoderma reesei. J Biol Chem 275:5817–5825

    Article  PubMed  CAS  Google Scholar 

  • Saloheimo M, Kuja-Panula J, Ylosmaki E, Ward M, Penttila M (2002) Enzymatic properties and intracellular localization of the novel Trichoderma reesei beta-glucosidase BGLII (Cel1A). Appl Environ Microbiol 68:4546–4553

    Article  PubMed  CAS  Google Scholar 

  • Sanders J, Scott E, Weusthuis R, Mooibroek H (2007) Bio-refinery as the bioinspired process to bulk chemicals. Macromol Biosci 7:105–117

    Article  PubMed  CAS  Google Scholar 

  • Seiboth B, Hartl L, Pail M, Fekete E, Karaffa L, Kubicek CP (2003) The galactokinase of Hypocrea jecorina is essential for cellulase induction by lactose but dispensable for growth on d-galactose. Mol Microbiol 51:1015–1025

    Article  CAS  Google Scholar 

  • Seiboth B, Gamauf C, Pail M, Hartl L, Kubicek CP (2007) The d-xylose reductase of Hypocrea jecorina is the major aldose reductase in pentose and d-galactose catabolism and necessary for beta-galactosidase and cellulase induction by lactose. Mol Microbiol 66:890–900

    Article  PubMed  CAS  Google Scholar 

  • Seiboth B, Ivanova C, Seidl-Seiboth V (2011)Trichoderma reesei: a fungal enzymeproducer for cellulosic biofuels. In: Dos Santos Bernardes MA (ed) Biofuel production-recent developments and prospects, Intech, Rijeka, ISBN: 978-953-307-478-8

    Google Scholar 

  • Senior DJ, Mayers PR, Saddler JN (1989) Production and purification of xylanases. Plant cell wall polymers biogenesis and biodegradation. ACS symposium Series ACS Publications, pp 644–653

    Google Scholar 

  • Sheehan J, Himmel M (1999) Enzymes, energy, and the environment: a strategic perspective on the US Department of Energy’s Research and Development Activities for Bioethanol. Biotechnol Prog 15:817–827

    Article  PubMed  CAS  Google Scholar 

  • Shin CS, Lee JP, Lee JS, Park SC (2000) Enzyme production of Trichoderma reesei Rut C-30 on various lignocelluloses substrates. Appl Biochem Biotech 84–86:237–245

    Article  Google Scholar 

  • Singhania RR, Sukumaran RK, Patel AK, Larroche C, Pandey A (2010) Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb Technol 46:541–549

    Article  CAS  Google Scholar 

  • Steiger MG, Vitikainen M et al (2011) Transformation system for Hypocrea jecorina (Trichodermareesei) that favors homologous integration and employs reusable bidirectionally selectable markers. Appl Environ Microbiol 77:114–121

    Article  PubMed  CAS  Google Scholar 

  • Sternberg D, Mandels GR (1979) Induction of cellulolytic enzymes in Trichoderma-reesei by sophorose. J Bacteriol 139:761–769

    PubMed  CAS  Google Scholar 

  • Sternberg D, Mandels GR (1982) β-glucosidase induction and repression in the cellulolytic fungus, Trichoderma reesei. Exp Mycol 6:115–124

    Article  CAS  Google Scholar 

  • Strauss J, Mach RL, Zeilinger S, Hartler G, Stoffler G, Wolschek M, Kubicek CP (1995) Crel, the carbon catabolite repressor protein from Trichoderma reesei. FEBS Lett 376:103–107

    Article  PubMed  CAS  Google Scholar 

  • Stricker AR, Grosstessner-Hain K, Wurleitner E, Mach RL (2006) Xyr1 (xylanase regulator 1) regulates both the hydrolytic enzyme system and D-xylose metabolism in Hypocrea jecorina. Eukaryot Cell 5:2128–2137

    Article  PubMed  CAS  Google Scholar 

  • Stricker AR, Trefflinger P, Aro N, Penttila M, Mach RL (2008) Role of Ace2 (Activator of Cellulases 2) within the xyn2 transcriptosome of Hypocrea jecorina. Fungal Genet Biol 45:436–445

    Article  PubMed  CAS  Google Scholar 

  • Subramaniyam R, Vimala R (2012) Solid state and submerged fermentation for the production of bioactive substances: a comparative study. Int J Sci Nat 3:480–486

    CAS  Google Scholar 

  • Suijdam J, Kossen N, Paul P (1980) An inoculum technique for the production of fungal pellets. Appl Microbiol Biotechnol 10:211–221

    Article  Google Scholar 

  • Sun WC, Cheng CH, Lee WC (2008a) Protein expression and enzymatic activity of cellulases produced by Trichoderma reesei Rut C-30 on rice straw. Process Biochem 43:1083–1087

    Article  CAS  Google Scholar 

  • Sun W-C, Cheng C-H, Lee W-C (2008b) Protein expression and enzymatic activity of cellulases produced by Trichoderma reesei Rut C-30 on rice straw. Process Biochem 43:1083–1087

    Article  CAS  Google Scholar 

  • Szakacs G, Tengerdy RP (1997) Lignocellulolytic enzyme production on pretreated poplar wood by filamentous fungi. World J Microb Biotechnol 13:487–490

    Article  CAS  Google Scholar 

  • Szengyel Z, Zacchi G (2000) Effect of acetic acid and furfural on cellulase production of Trichoderma reesei RUT C30. Appl Biochem Biotechnol 89:31–42

    Article  PubMed  CAS  Google Scholar 

  • Szengyel Z, Zacchi G, Reczey K (1997) Cellulase production based on hemicellulose hydrolysate from steam-pretreated willow. Appl Biochem Biotech 63–65:351–362

    Article  Google Scholar 

  • Szengyel Z, Zacchi G, Varga A, Réczey K (2000) Cellulase production of Trichoderma reesei Rut C 30 using steam-pretreated spruce hydrolytic potential of cellulases on different substrates. Appl Biochem Biotech 84–86:679–691

    Article  Google Scholar 

  • Szijarto N, Szengyel Z, Lidén G, Réczey K (2004) Dynamics of cellulase production by glucose grown cultures of Trichoderma reesei Rut-C30 as a response to addition of cellulose. Appl Biochem Biotech 113:115–124

    Article  Google Scholar 

  • Teeri TT (1997) Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol 15:160–167

    Article  Google Scholar 

  • Thygesen A, Thomsen AB, Schmidt AS, Jorgensen H, Ahring BK, Olsson L (2003) Production of cellulose and hemicellulose degrading enzymes by filamentous fungi cultivated on wetoxidizedwheat straw. Enzyme Microb Technol 32:606–615

    Article  CAS  Google Scholar 

  • Törrönen A, Mach RL, Messner R, Gonzalez R, Kalkkinen N, Harkki A, Kubicek CP (1992) The two major xylanases from Trichoderma reesei: characterization of both enzymes and genes. Nat Biotechnol 10:1461–1465

    Article  Google Scholar 

  • Törrönen A, Harkki A, Rouvinen J (1994) Three-dimensional structure of endo-1,4-beta-xylanase II from Trichoderma reesei: two conformational states in the active site. EMBO J 13:2493–2501

    PubMed  Google Scholar 

  • Trivedi N, Gupta V, Kumar M, Kumari P, Reddy CRK, Jha B (2011) An alkali-halotolerant cellulase from Bacillus flexus Isolated from green seaweed Ulva lactuca. Carbohydr Polym 83:891–897

    Article  CAS  Google Scholar 

  • Tu M, Chandra RP, Saddler JN (2007) Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates. Biotechnol Prog 23:398–406

    Article  PubMed  CAS  Google Scholar 

  • Vaheri M, Leisola M, Kauppinen V (1979) Transglycosylation products of cellulase system of Trichodermareesei. Biotechnol Lett 1:41–46

    Google Scholar 

  • Voutilainen SP, Murray PG, Tuohy MG, Koivula A (2010) Expression of Talaromyces emersonii cellobiohydrolase Cel7A in Saccharomyces cerevisiae and rational mutagenesis to improve its thermostability and activity. Protein Eng Des Sel 23:69–79

    Article  PubMed  CAS  Google Scholar 

  • Walker LP, Wilson DB (1991) Enzymatic hydrolysis of cellulose: an overview. Bioresource Technol 36:3–14

    Article  CAS  Google Scholar 

  • Wang T, Liu X, Yu Q, Zhang X, Qu Y, Gao P (2005) Directed evolution for engineering pH profile of endoglucanase III from Trichoderma reesei. Biomol Eng 22:89–94

    Article  PubMed  CAS  Google Scholar 

  • Warzywoda M, Ferre V, Pourquie J (1983) Development of a culture medium for large-scale production of cellulolytic enzymes by Trichoderma reesei. Biotechnol Bioeng 25:3005–3011

    Article  PubMed  CAS  Google Scholar 

  • Wen Z, Liao W, Chen S (2005) Production of cellulase by Trichoderma reesei from dairy manure. Bioresource Technol 96:491–499

    Article  CAS  Google Scholar 

  • Wen F, Nair NU, Zhao H (2009) Protein engineering in designing tailored enzymes and microorganisms for biofuels. Curr Opin Biotechnol 20:412–419

    Article  PubMed  CAS  Google Scholar 

  • Wilson DB (2009) Cellulases and biofuels. Curr Opin Biotechnol 20:295–299

    Google Scholar 

  • Wohlfahrt G, Pellikka T, Boer H, Teeri TT, Koivula A (2003) Probing pH-dependent functional elements in proteins: modification of carboxylic acid pairs in Trichoderma reesei cellobiohydrolase Cel6A. Biochemistry 42:10095–10103

    Article  PubMed  CAS  Google Scholar 

  • Wosten HAB, Moukha SM, Sietsma JH, Wessels JGH (1991) Localization of growth and secretion of proteins in aspergillus-niger. J Gen Microbiol 137:2017–2023

    Article  PubMed  CAS  Google Scholar 

  • Xia T, Wang Q (2009) Directed evolution of Streptomyces lividans xylanase B toward enhanced thermal and alkaline pH stability. World J Microbiol Biotechnol 25:93–100

    Article  CAS  Google Scholar 

  • Xiong H, Turunen O, Pastinen O, Leisola M, von Weymarn N (2004a) Improved xylanase production by Trichoderma reesei grown on L-arabinose and lactose or d-glucose mixtures. Appl Microbiol Biotechnol 64:353–358

    Article  PubMed  CAS  Google Scholar 

  • Xiong H, von Weymarn N, Leisola M, Turunen O (2004b) Influence of pH on the production of xylanases by Trichoderma reesei Rut C-30. Process Biochem 39:731–736

    Article  CAS  Google Scholar 

  • Xiong H, von Weymarn N, Turunen O, Leisola M, Pastinen O (2005) Xylanase production by Trichoderma reesei Rut C-30 grown on L-arabinose-rich plant hydrolysates. Bioresource Technol 96:753–759

    Article  CAS  Google Scholar 

  • Yao HZ, Xiao LW, Tian HW, Qiao J (2007) Agrobacterium-mediated transformation (AMT) of Trichoderma reesei as an efficient tool for random insertional mutagenesis. Appl Microbiol Biotechnol 73:1348–1354

    Article  CAS  Google Scholar 

  • Yu X, Koo YM (1999) Cellulase production by Trichoderma reesei Rut C-30 with batchand fed-batch fermentation. Food Ferment Ind 25:16–19

    CAS  Google Scholar 

  • Zeilinger S, Mach RL, Schindler M, Herzog P, Kubicek CP (1996) Different inducibility of expression of the two xylanase genes xyn1 and xyn2 in Trichoderma reesei. J Biol Chem 271:25624–25629

    Article  PubMed  CAS  Google Scholar 

  • Zeilinger S, Ebner A, Marosits T, Mach R, Kubicek CP (2001) The Hypocrea jecorina HAP 2/3/5 protein complex binds to the inverted CCAAT-box (ATTGG) within the cbh2 (cellobiohydrolase II-gene) activating element. Mol Genet Genomics 266:56–63

    Article  PubMed  CAS  Google Scholar 

  • Zhang YHP, Himmel ME, Mielenz JR (2006) Outlook for cellulase improvement: screening and selection strategies. Biotechnol Adv 24:452–481

    Article  CAS  Google Scholar 

  • Zou G, Shi SH et al (2012) Construction of a cellulase hyper-expression system in Trichoderma reesei by promoter and enzyme engineering. Microb Cell Fact 11:21

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by U.S. Department of Energy through the DOE Great Lakes Bioenergy Research Center (GLBRC) Grant DE‐FC02‐07ER64494. We would like to thank James Humpula from Biomass conversion research laboratory located at Michigan State University, East Lansing for giving his valuable suggestion while drafting this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkatesh Balan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Balan, V., Jin, M., Culbertson, A., Uppugundla, N. (2013). The Saccharification Step: Trichoderma Reesei Cellulase Hyper Producer Strains. In: Faraco, V. (eds) Lignocellulose Conversion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37861-4_4

Download citation

Publish with us

Policies and ethics