Skip to main content

Sources for Lignocellulosic Raw Materials for the Production of Ethanol

  • Chapter
  • First Online:

Abstract

Production of ethanol from non-crop plant cell walls represents a sustainable solution for biofuel production due to the abundance of these renewable resources on our planet. The resources for cellulosic raw material can be either dedicated bioenergy feedstocks such as fast growing trees and energy grasses, or those based on by-products and waste materials such as crop residues and municipal solid waste. The processing of lignocellulosic into biofuel still requires expensive and harsh pretreatments, some of which are not acceptable from environmental point of view. This is due to the high level crystallinity of the cellulose and cross linking of the carbohydrates with the lignin that form a barrier preventing efficient and economic biomass enzymatic digestion. The advances in plant genetic engineering enable genetic modifications of the plant cell wall structure and function and may provide solutions that will help to overcome the difficulty in utilizing energy crops and trees. Despite the current technological difficulties related to processing of the complex cell wall polymers into fermentable sugars, the demand for renewable liquid fuel motivates the search for practical solutions and development of innovative technologies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abramson M, Shoseyov O, Shani Z (2010) Plant cell wall reconstruction toward improved lignocellulosic production and processability. Plant Sci 178:61–72

    Article  CAS  Google Scholar 

  • Al-Salem S, Lettieri P, Baeyens J (2009) Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manag 29:2625–2643

    Article  PubMed  CAS  Google Scholar 

  • Beede DN, Bloom DE (1995) Economics of the generation and management of MSW. NBER Working Papers 5116. National Bureau of Economic Research, Inc

    Google Scholar 

  • Beringer T, Lucht W, Schaphoff S (2011) Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. GCB Bioenergy 3:299–312

    Article  CAS  Google Scholar 

  • Bindschedler LV, Tuerck J, Maunders M, Ruel K, Petit-Conil M, Danoun S, Boudet AM, Joseleau JP, Paul Bolwell G (2007) Modification of hemicellulose content by antisense down-regulation of UDP-glucuronate decarboxylase in tobacco and its consequences for cellulose extractability. Phytochemistry 68:2635–2648

    Article  PubMed  CAS  Google Scholar 

  • Brosse N, Dufour A, Meng X, Sun Q, Ragauskas A (2012) Miscanthus: a fast growing crop for biofuels and chemicals production. Biofuels Bioprod Biorefin 6:580–598

    Article  CAS  Google Scholar 

  • Byrt CS, Grof CPL, Furbank RT (2011) C4 Plants as biofuel feedstocks: optimising biomass production and feedstock quality from a lignocellulosic perspective. J Integr Plant Biol 53:120–135

    Article  PubMed  CAS  Google Scholar 

  • Carroll A, Somerville C (2009) Cellulosic biofuels. Ann Rev Plant Biol 60:165–182

    Article  CAS  Google Scholar 

  • Chandel AK, Singh V (2011) Weedy lignocellulosic feedstock and microbial metabolic engineering: advancing the generation of ‘Biofuel’. App Microbiol Biotechnol 89:1289–1303

    Article  CAS  Google Scholar 

  • Chandel AK, da Silva SS, Carvalho W, Singh OV (2012) Sugarcane bagasse and leaves: foreseeable biomass of biofuel and bio-products. J Chem Technol Biotechnol 87:11–20

    Article  CAS  Google Scholar 

  • Chester M, Martin E (2009) Cellulosic ethanol from municipal solid waste: a case study of the economic, energy, and greenhouse gas impacts in California. Environ Sci Technol 43:5183–5189

    Article  PubMed  CAS  Google Scholar 

  • Cook C, Devoto A (2011) Fuel from plant cell walls: recent developments in second generation bioethanol research. J Sci Food Agric 91:1729–1732

    Article  PubMed  CAS  Google Scholar 

  • Davis SC, Anderson-Teixeira KJ, Delucia EH (2009) Life-cycle analysis and the ecology of biofuels. Trends Plant Sci 14:140–146

    Article  PubMed  CAS  Google Scholar 

  • Dixon RA (2013) Microbiology: break down the walls. Nature 493:36–37

    Article  PubMed  Google Scholar 

  • Ellis BE (2012) Bringing trees into the fuel line. New Phytol 194:1–3

    Article  PubMed  Google Scholar 

  • Eudes A, George A, Mukerjee P, Kim JS, Pollet B, Benke PI, Yang F, Mitra P, Sun L, Çetinkol ÖP, Chabout S, Mouille G, Soubigou-Taconnat L, Balzergue S, Singh S, Holmes BM, Mukhopadhyay A, Keasling JD, Simmons BA, Lapierre C, Ralph J, Loqué D (2012) Biosynthesis and incorporation of side-chain-truncated lignin monomers to reduce lignin polymerization and enhance saccharification. Plant Biotechnol J10:609–620

    Article  Google Scholar 

  • Faraco V, Hadar Y (2011) The potential of lignocellulosic ethanol production in the Mediterranean basin. Renew Sustain Energy Rev 15:252–266

    Article  CAS  Google Scholar 

  • Gibson LG (2012) The hierarchical structure and mechanics of plant materials. J Royal Soc Interface 9:2749–2766

    Article  CAS  Google Scholar 

  • Goulao LF, Vieira-Silva S, Jackson PA (2011) Association of hemicellulose-and pectin-modifying gene expression with Eucalyptus globulus secondary growth. Plant Physiol Biochem 49:873–881

    Article  PubMed  CAS  Google Scholar 

  • Harfouche A, Meilan R, Altman A (2011) Tree genetic engineering and applications to sustainable forestry and biomass production. Trends Biotechnol 29:9–17

    Article  PubMed  CAS  Google Scholar 

  • Harris D, Stork J, Debolt S (2009) Genetic modification in cellulose-synthase reduces crystallinity and improves biochemical conversion to fermentable sugar. GCB Bioenergy 1:51–61

    Article  CAS  Google Scholar 

  • Harris DM, Corbin K, Wang T, Gutierrez R, Bertolo AL, Petti C, Smilgies DM, Estevez JM, Bonetta D, Urbanowicz BR, Ehrhardt DW, Somerville CR, Rose JKC, Hong M, DeBolt S (2012) Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1A903V and CESA3T942I of cellulose synthase. Proc Nat Acad Sci U S A 109: 4098–4103

    Google Scholar 

  • Harris PJ, Stone BA (2008) Chemistry and molecular organization of plant cell walls. In: Himmel ME (ed) Biomass recalcitrance. Blackwell, Oxford, pp 60–93

    Google Scholar 

  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Nat Acad Sci U S A 103:11206–11210

    Article  CAS  Google Scholar 

  • Himmel ME, Ding S-Y, Johnson DK, Adney WS, Nimlos MR, Brady JW, Foust TD (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315:804–8807

    Article  PubMed  CAS  Google Scholar 

  • Hoenicka H, Lautner S, Klingberg A, Koch G, El Sherif F, Lehnhardt D, Zhang B, Burgert I, Odermatt J, Melzer S, Fromm J, Fladung M (2012) Influence of over-expression of the flowering promoting factor 1gene (FPF1) from Arabidopsis on wood formation in hybrid poplar (Populus tremula L. × P. tremuloides Michx.). Planta 235: 359–373

    Google Scholar 

  • Jones CS, Mayfieldt SP (2012) An overview of algae biofuel production and potential environmental impact. Environ Sci Technol 46:7073–7085

    Article  Google Scholar 

  • Jordan DB, Bowman MJ, Braker JD, Dien BS, Hector RE, Lee CC, Mertens JA, Wagschal K (2012) Plant cell walls to ethanol. Biochem J 442:241–252

    Article  PubMed  CAS  Google Scholar 

  • Joshi CP, Thammannagowda S, Fujino T, Gou JQ, Avci U, Haigler CH, McDonnell LM, Mansfield SD, Mengesha B, Carpita NC, Harris D, DeBolt S, Peter GP (2011) Perturbation of wood cellulose synthesis causes pleiotropic effects in transgenic aspen. Mol Plant 4:331–345

    Article  PubMed  CAS  Google Scholar 

  • Jung JH, Fouad WM, Vermerris W, Gallo M, Altpeter F (2012a) RNAi suppression of lignin biosynthesis in sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass. Plant Biotechnol J 10:1067–1076

    Article  PubMed  CAS  Google Scholar 

  • Jung HG, Samac DA, Sarath G (2012b) Modifying crops to increase cell wall digestibility. Plant Sci 185–186:65–77

    Article  PubMed  Google Scholar 

  • Kalogo Y, Habibi S, Maclean HL, Joshi SV (2007) Environmental implications of municipal solid waste-derived ethanol. Environ Sci Technol 41:35–41

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Dale BE (2004) Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26:361–375

    Article  Google Scholar 

  • Kullander S (2010) Food security: crops for people not for cars. Ambio 39:249–256

    Article  PubMed  Google Scholar 

  • Lal R (2005) World crop residues production and implications of its use as a biofuel. Environ Int 31:575–584

    Article  PubMed  CAS  Google Scholar 

  • Lee C, Teng Q, Huang W, Zhong R, Ye Z (2009) Down-regulation of PoGT47C expression in poplar results in a reduced glucuronoxylan content and an increased wood digestibility by cellulase. Plant Cell Physiol 50:1075–1089

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre S, Lawson T, Fryer M, Zakhleniuk OV, Lloyd JC, Raines CA (2005) Increased sedoheptulose-1, 7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development. Plant Physiol 138:451–460

    Article  PubMed  CAS  Google Scholar 

  • Levy I, Shani Z, Shoseyov O (2002) Modification of polysaccharides and plant cell wall by endo-1,4-beta-glucanase and cellulose-binding domains. Biomol Eng 19:17–30

    Article  PubMed  CAS  Google Scholar 

  • Li A, Antizar-Ladislao B, Khraisheh M (2007) Bioconversion of municipal solid waste to glucose for bio-ethanol production. Bioprocess Biosyst Eng 30:189–196

    Article  PubMed  Google Scholar 

  • Li S, Zhang X, Andresen JM (2012) Production of fermentable sugars from enzymatic hydrolysis of pretreated municipal solid waste after autoclave process. Fuel 84:92–98

    Google Scholar 

  • Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects. Progress in Energy and Combustion Sci 38:449–467

    Article  CAS  Google Scholar 

  • Ma C, Naidu R, Liu F, Linand C, Hui Ming H (2012) Influence of hybrid giant Napier grass on salt and nutrient distributions with depth in a saline soil. Biodegradation 23:907–916

    Article  PubMed  CAS  Google Scholar 

  • Mizrachi E, Mansfield SD, Myburg AA (2012) Cellulose factories: advancing bioenergy production from forest trees. New Phytol 194:54–62

    Article  PubMed  CAS  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol 96:673–686

    Article  PubMed  CAS  Google Scholar 

  • Muir JP, Sanderson MA, Ocumpaugh WR, Jones RM, Reed RL (2001) Biomass production of ‘Alamo’ switchgrass in response to nitrogen, phosphorus, and row spacing. Agron J 93:896–901

    Article  Google Scholar 

  • Ng TL, Eheart JW, Cai X, Miguez F (2010) Modeling Miscanthus in the soil and water assessment tool (SWAT) to simulate its water quality effects as a bioenergy crop. Environ Sci Technol 44:7138–7144

    Article  PubMed  CAS  Google Scholar 

  • Nieminen K, Robischon M, Immanen J, Helariutta Y (2012) Towards optimizing wood development in bioenergy trees. New Phytol 194:46–53

    Article  PubMed  CAS  Google Scholar 

  • Nonic M, Vettori C, Boscaleri F, Milovanovic J, Sijacic-Nikolic M (2012) Genetically modified trees-state and perspectives Genetika-Belgrade 44: 429–440

    Google Scholar 

  • Parrish DJ, Fike JH (2009) Selecting, establishing, and managing switch grass (Panicum virgatum) for biofuels. Methods Mol Biol 581:27–40

    Article  PubMed  Google Scholar 

  • Park YW, Baba K, Furuta Y, Iida I, Sameshima K, Arai M, Hayashi T (2004) Enhancement of growth and cellulose accumulation by overexpression of xyloglucanase in poplar. FEBS Lett 564:183–187

    Article  PubMed  CAS  Google Scholar 

  • Park YW, Tominaga R, Sugiyama J, Furuta Y, Tanimoto E, Samejima M, Sakai F, Hayashi T (2003) Enhancement of growth by expression of poplar cellulase in Arabidopsis thaliana. Plant J 33:1099–1106

    Article  PubMed  CAS  Google Scholar 

  • Pauly M, Keegstra K (2008) Cell wall carbohydrates and their modification as a resource for biofuels. Plant J 54:559–568

    Article  PubMed  CAS  Google Scholar 

  • Perlack RD, Wright L, Turhollow LA, Graham RL, Stokes B, Erbach DC (2005) Biomasses feedstock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply. Oak Ridge National Laboratory Report ORNL/TM-2005/66. Oak Ridge, TN: US Dept. of Energy

    Google Scholar 

  • Pilate G, Dejardin A, Leple JC (2012) Field trials with lignin-modified transgenic trees. Adv Bot Res 61:1–36

    Article  CAS  Google Scholar 

  • Puri M, Abraham RE, Colin I, Barrow J (2012) Biofuel production: prospects, challenges and feedstock in Australia. Renew Sustain Energy Rev 16:6022–6031

    Article  CAS  Google Scholar 

  • Recosky DC, Forcella F (1998) Cover crop and soil quality interaction in agroecosystems. J Soil Water Conserv 53:242–249

    Google Scholar 

  • Reddy KO, Maheswari CU, Shukla M, Rajulu AV (2012) Chemical composition and structural characterization of Napier grass fibers. Mater Lett 67: 35–38

    Google Scholar 

  • Safra-Dassa L, Shani Z, Danin A, Roiz L, Shoseyov O, Wolf S (2006) Growth modulation of transgenic potato plants by heterologous expression of bacterial carbohydrate-binding module. Mol Breed 17:355–364

    Article  CAS  Google Scholar 

  • Sanchez OJ, Cardona CA (2008) Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresour Technol 99:5270–5295

    Article  PubMed  CAS  Google Scholar 

  • Sasmal S, Goud VV, Mohanty K (2012) Characterization of biomasses available in the region of North-East India for production of biofuels. Biomass Bioenergy 45:212–220

    Article  CAS  Google Scholar 

  • Schmitt E, Bura R, Gustafson R, Cooper J, Vajzovic A (2012) Converting lignocellulosic solid waste into ethanol for the State of Washington: an investigation of treatment technologies and environmental impacts. Bioresour Technol 104:400–409

    Article  PubMed  CAS  Google Scholar 

  • Shani Z, Dekel M, Tsabary G, Goren R, Shoseyov O (2004) Growth enhancement of transgenic poplar plants by overexpression of Arabidopsis thaliana endo-1,4-β-glucanase (cel1). Mol Breed 14:321–330

    Article  Google Scholar 

  • Shani Z, Dekel M, Tsabary G, Shoseyov O (1997) Cloning and characterization of elongation specific endo-1,4-beta-glucanase (cel1) from Arabidopsis thaliana. Plant Mol Biol 34:837–842

    Article  PubMed  CAS  Google Scholar 

  • Seguim A (2011) How could forest trees could play an important role as feedstolck for bioenergy production. Curr Opin Environ Sustain 3:090–094

    Article  Google Scholar 

  • Shoseyov O, Shani Z, Levy I (2006) Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev 70:283–295

    Article  PubMed  CAS  Google Scholar 

  • Stichnothe H, Azapagic A (2009) Bioethanol from waste: life cycle estimation of the greenhouse gas saving potential. Resour Conserv Recycl 53:624–630

    Article  Google Scholar 

  • Tarkalson DD, Payero JO, Hergert GW, Cassman KG (2006) Acidification of soil in a dry land winter wheat-sorghum/corn fallow rotation in the semiarid US Great Plains. Plant Soil 283:367–379

    Article  CAS  Google Scholar 

  • UNCTAD (2007) Infocomm market information in the commodities areas. Available at http://www.unctad.org/infocomm

  • Valentine J, Clifton-Brown J, Hastings A, Robson P, Allison G, Smith P (2012) Food vs. fuel: the use of land for lignocellulosic ‘next generation’ energy crops that minimize competition with primary food production. GCB Bioenergy 4:1–19

    Article  Google Scholar 

  • Vanholme RK, Morreel C, Darrah P, Oyarce J, Grabber JH, Ralph J, Boerjan W (2012a) Metabolic engineering of novel lignin in biomass crops. New Phytol 196:978–1000

    Article  PubMed  CAS  Google Scholar 

  • Vanholme R, Storme V, Vanholme B, Sundin S, Christensen JH, Goemine G, Halpin C, Rohde A, Morreel K, Boerjan W (2012b) A systems biology view of responses to lignin biosynthesis perturbations in Arabidopsis. Plant Cell 24:3506–3529

    Article  PubMed  CAS  Google Scholar 

  • Vanholme R, Van Acker R, Boerjan W (2010) Potential of Arabidopsis systems biology to advance the biofuel field. Trends Biotechnol 28:543–547

    Article  PubMed  CAS  Google Scholar 

  • Wang ZY, Brummer EC (2012) Is genetic engineering ever going to take off in forage, turf and bioenergy crop breeding? Ann Bot 110:1317–1325

    Article  PubMed  Google Scholar 

  • Wang HZ, Dixon RA (2012) On-off switches for secondary cell wall biosynthesis. Mol Plant 5:297–303

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm WW, Johnson JMF, Hatfield JL, Voorhees WB, Linden DR (2004) Crop and soil productivity response to corn residue removal: a literature review. Agron J 96:1–17

    Article  Google Scholar 

  • Woodard KR, Prine GM (1993) Dry matter accumulation of elephantgrass, energycane, and elephantmillet in a subtropical climate. Crop Sci 33:818–824

    Article  Google Scholar 

  • Wongwatanapaiboon J, Kangvansaichol K, Burapatana V, Inochanon R, Winayanuwattikun P, Yongvanich T, Chulalaksananukul W (2012) The potential of cellulosic ethanol production from grasses in Thailand. J Biomed Biotech, Article Number: 303748. doi: 10.1155/2012/303748

  • Xie G, Peng L (2011) Genetic engineering of energy crops: a strategy for biofuel production in china. J Integr Plant Biol 53:143–150

    Article  PubMed  Google Scholar 

  • Xu B, Escamilla-Treviño L, Sathitsuksanoh L, Shen N, Shen Z, Percival H, Zhang Y-H, Dixon RA, Zhao B (2011) Silencing of coumarate: coenzyme A ligase in switchgrass leads to reduced lignin content and improved fermentable sugar yields for biofuel production. New Phytol 192:611–625

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yitzhak Hadar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hadar, Y. (2013). Sources for Lignocellulosic Raw Materials for the Production of Ethanol. In: Faraco, V. (eds) Lignocellulose Conversion. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37861-4_2

Download citation

Publish with us

Policies and ethics