Skip to main content

Data Fusion for the Diagnostics, Prognostics, and Health Management of Aircraft Systems

  • Conference paper
  • First Online:
Foundations and Practical Applications of Cognitive Systems and Information Processing

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 215))

Abstract

In the diagnostics, prognostics, and health management (DPHM) program for aircraft, enormous data, information, and knowledge relevant to the health states of aircraft are collected from various sources. The proper interpretation and using of these data and information constitute the basis for a sound decision making of maintenance activities. The raw data is pre-processed, extracted, combined, and integrated into reference information for decision making. Data fusion becomes a key technology at varied levels in this process This paper identifies and describes the role of data fusion in the context of modern DPHM program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mrad N, Lejmi-Mrad R (2011) Advances in health monitoring and management. In: Expert systems for human, materials and automation. InTech, pp 109–136

    Google Scholar 

  2. Jardine A, Lin D, Banjevic D (2006) A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech Syst Signal Process 20:1483–1510

    Article  Google Scholar 

  3. Farrar CR, Worden K (2007) An introduction to structural health monitoring. R Soc Lond Trans Ser A 365:303–315

    Article  Google Scholar 

  4. Farrar CR, Doebling SW, Nix DA (2001) Vibrationbased structural damage identification. Philos Trans R Soc Lond Ser A Math Phys Eng Sci 359:131–149

    Article  MATH  Google Scholar 

  5. Byington CS, Garga AK (2001) 23 Data fusion for developing predictive diagnostics for electromechanical systems. In: Handbook of multisensor data fusion. CRC Press, Taylor and Francis Group, New York, pp 1–32

    Google Scholar 

  6. Vachtsevanos G, Lewis F, Roemer M, Hess A, Wu B (2006) Intelligent fault diagnosis and prognosis for engineering systems. Wiley, Hoboken

    Book  Google Scholar 

  7. Kumar S, Pecht M (2008) Data analysis approach for system reliability, diagnostics and prognostics. In: Pan Pacific microelectronics symposium, Kauai, USA, pp 1–9

    Google Scholar 

  8. Lewis FL (2011) Intelligent fault diagnosis and prognosis. Presentation available at http://arri.uta.edu/acs. Accessed Nov 2011

  9. Tejedor TA (2007) Towards the future of gas turbine asset and performance management. In: Power industry international, 2007, pp 19–21

    Google Scholar 

  10. Dragomier OE, Gouriveau R, Dragomir F (2009) Review of prognostic problem in condition-based maintenance. In: European control conference, Hungary, Budapest, pp 1–6

    Google Scholar 

  11. Klein LA (1999) Sensor and data fusion concepts and applications. Society of Photo-Optical Instrumentation Engineers (SPIE), Bellingham

    Google Scholar 

  12. Pidaparti RM (2007) Structural corrosion health assessment using computational intelligence methods. Struct Health Monit 6:245–259

    Article  Google Scholar 

  13. Roemer M, Orsagh R, Schoeller M, Scheid J, Friend R, Sotomayer W (2002) Upgrading engine test cells for improved troubleshooting and diagnostics. In: IEEE aerospace conference, vol 6, pp 6-3005–6-3013

    Google Scholar 

  14. Byington CS, Watson MJ, Lee H, Hollins M (2008) Sensor-level fusion to enhance health and usage monitoring systems. In: AHS 64th annual forum and technology display, Montreal, QC, Canada

    Google Scholar 

  15. Liu Z, Forsyth D, Komorowski J, Hanasaki K, Kirubarajan T (2007) Survey: state of the art in nde data fusion techniques. IEEE Trans Instrum Measur 56:2435–2451

    Article  Google Scholar 

  16. Su Z, Wang X, Cheng L, Yu L, Chen Z (2009) On selection of data fusion schemes for structural damage evaluation. Struct Health Monit 8:223–241

    Article  Google Scholar 

  17. Gupta K, Ghasr M, Kharkovsky S, Zoughi R, Stanley R, Padwal A, OKeefe M, Palmer D, Blackshire J, Steffes G, Wood N (2007) Fusion of microwave and eddy current data for a multi-modal approach in evaluating corrosion under paint and in lap joints. In: Thompson DO, Chimenti DE (eds) Proceedings of the 33th annual review of progress in quantitative nondestructive evaluation, vol 894. AIP, 2007, pp 811–618

    Google Scholar 

  18. Thomas A (2008) Extending the rx anomaly detection algorithm to continuous spectral and spatial domains. In: IEEE southeastcon, pp 557–562

    Google Scholar 

  19. De S, Gupta K, Stanley R, Steffes G, Palmer D, Zoughi R (2009) A data fusion based approach for evaluation of material loss in corroded aluminum panels. In: IEEE conference on intelligent transportation systems, pp 1–6

    Google Scholar 

  20. Papazian JM, Anagnostou EL, Engel SJ, Hoitsma D, Madsen J, Silberstein RP, Welsh G, Whiteside JB (2009) A structural integrity prognosis system. Eng Fract Mech 76:620–632

    Article  Google Scholar 

  21. Chin HH Turbine engine hot section prognostics, http://www.appliedconceptresearch.com/Turbine%20Engine%20Hot%20Section%20Prognostics.pdf

  22. Kacprzynski GJ, Muench DS (2006) Sensor/model fusion for adaptive prognosis of structural corrosion damage. Technical report, Impact Technologies LLC, Rochester, USA

    Google Scholar 

  23. Manson G (2003) Experimental validation of a structural health monitoring methodology: Part III. Damage location on an aircraft wing. J Sound Vibr 259:365–385

    Article  Google Scholar 

  24. Worden K, Manson G, Denœux T (2009) An evidence-based approach to damage location on an aircraft structure. Mechl Syst Signal Process 23:1792–1804

    Article  Google Scholar 

  25. Bonissone P, Iyer N (2007) Soft computing applications to prognostics and health management (PHM): leveraging field data and domain knowledge. In: Sandoval F, Prieto A, Cabestany J, Graa M (eds) Computational and ambient intelligence. Lecture notes in computer science, vol 4507. Springer, Berlin, pp 928–939

    Google Scholar 

  26. Byington C, Watson M, Amin S, Begin M (2008) False alarm mitigation of vibration diagnostic systems. In: IEEE aerospace conference, pp 1–11

    Google Scholar 

  27. Schoeller MH, Roemer MJ, Leonard MS, Derriso M (2007) Embedded reasoning supporting aerospace IVHM. Technical report, Impact Technologies LLC, Rochester, USA

    Google Scholar 

  28. Volponi A (2005) Data fusion for enhanced aircraft engine prognostics and health management. Technical report, Pratt & Whitney, Connecticut, USA

    Google Scholar 

  29. Volponi AJ, Brotherton T, Luppold R (2004) Development of an information fusion system for engine diagnostics and health management. In: 1st intelligent systems technical conference, Chicago, USA

    Google Scholar 

  30. Amin S, Byington C, Watson M (2005) Fuzzy inference and fusion for health state diagnosis of hydraulic pumps and motors. In: Proceedings of the annual meeting of the North American fuzzy information processing society, pp 1–6

    Google Scholar 

  31. Yan W, Xue F (2008) Jet engine gas path fault diagnosis using dynamic fusion of multiple classifiers. In: IEEE international joint conference on neural networks, IEEE world congress on computational intelligence, China, Hong Kong, pp 1585–1591

    Google Scholar 

  32. Bonissone PP, Xue F, Subbu R (2011) Fast meta-models for local fusion of multiple predictive models. Appl Soft Comput 11:1529–1539

    Article  Google Scholar 

  33. Byington CS, Watson M, Edwards D (2004) Data-driven neural network methodology to remaining life predictions for aircraft actuator components. In: 2004 IEEE aerospace conference proceedings, IEEE 2004, pp 3581–3589

    Google Scholar 

  34. Byington C, Watson M, Edward D, Dunkin B (2003) In-line health monitoring system for hydraulic pumps and motors. In: IEEE aerospace conference, New York, USA

    Google Scholar 

  35. Byington CS, Garga AK (2008) Data fusion for developing predictive diagnostics for electromechanical systems. Electrical engineering and applied signal processing series. In: Handbook of multisensor data fusion: theory and practice, 2 edn. CRC Press, Taylor and Francis Group, pp 1–32

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, Z., Mrad, N. (2014). Data Fusion for the Diagnostics, Prognostics, and Health Management of Aircraft Systems. In: Sun, F., Hu, D., Liu, H. (eds) Foundations and Practical Applications of Cognitive Systems and Information Processing. Advances in Intelligent Systems and Computing, vol 215. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37835-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37835-5_34

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37834-8

  • Online ISBN: 978-3-642-37835-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics