Skip to main content

Adaptive Boosting for Enhanced Vortex Visualization

  • Conference paper
  • First Online:
  • 2059 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 213))

Abstract

In this paper, we demonstrate the use of machine learning techniques to enhance the robustness of vortex visualization algorithms. We combine several local feature detection algorithms, which we term weak classifiers into a robust compound classifier using adaptive boosting or AdaBoost. This compound classifier combines the advantages of each individual local classifier. Our primary application area is vortex detection in fluid dynamics datasets. We demonstrate the efficacy of our approach by applying the compound classifier to a variety of fluid dynamics datasets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. ExaScale Software Study (2009) Software challenges in extreme scale systems. Technical report, DARPA

    Google Scholar 

  2. Thompson DS, Machiraju R, Jiang M, Nair J, Craciun G, Venkata S (2002) Physics-based feature mining for large data exploration. IEEE Comput Sci Eng 4(4):22–30

    Article  Google Scholar 

  3. Chakraborty P, Balachandarand S, Adrian RJ (2005) On the relationships between local vortex identification schemes. J Fluid Mech 535:189–214

    Article  MathSciNet  MATH  Google Scholar 

  4. Haimes R, Kenwright DN (1999) On the velocity gradient tensor and fluid feature extraction. In: AIAA 14th Computational fluid dynamics conference, paper 99-3288

    Google Scholar 

  5. Jiang M, Machiraju R, Thompson DS (2002) Geometric verification of swirling features in flow fields. IEEE Vis 02:307–314

    Google Scholar 

  6. Freund Y, Schapire R (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1):119–139

    Article  MathSciNet  MATH  Google Scholar 

  7. Robinson SK (1991) Coherent motions in the turbulent boundary layer. Ann Rev Fluid Mech 23:601–639

    Article  Google Scholar 

  8. Jiang M, Machiraju R, Thompson DS (2005) Detection and visualization of vortices. In: Visualization handbook. Academic Press, pp 287–301

    Google Scholar 

  9. Roth M (2000) Automatic extraction of vortex core lines and other line-type features for scientific visualization. PhD thesis, Swiss Federal Institute of Technology Zrich

    Google Scholar 

  10. Haller G (2005) An objective definition of a vortex. J Fluid Mech 525:126

    Article  MathSciNet  Google Scholar 

  11. Garth C, Gerhardt F, Tricoche X (2007) Efficient computation and visualization of coherent structures in fluid flow applications. IEEE Trans Vis Comput Graph 13(6):1464–1471

    Article  Google Scholar 

  12. Haller G (2001) Distinguished material surface and coherent structures in three-dimensional flows. Physica D 149:248–277

    Article  MathSciNet  MATH  Google Scholar 

  13. Berdahl CH, Thompson DS (1993) Education of swirling structure using the velocity gradient tensor. AIAA J 31(1):97–103

    Article  MATH  Google Scholar 

  14. Chong MS, Perry AE, Cantwell BJ (1990) A general classification of three-dimensional flow fields. Phys Fluids A 2(5):765–777

    Article  MathSciNet  Google Scholar 

  15. Hunt J, Wray A, Moin P (1988) Eddies, stream, and convergence zones in turbulent flows. Technical report CTR-S88, Center for Turbulence Research, Stanford University

    Google Scholar 

  16. Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69–94

    Article  MathSciNet  MATH  Google Scholar 

  17. Levy Y, Degani D, Seginer A (1990) Graphical visualization of vortical flows by means of helicity. AIAA J 28(8):1347–1352

    Article  Google Scholar 

  18. Miura H, Kida S (1997) Identification of tubular vortices in turbulence. J Phys Soc Jpn 66(5):1331–1334

    Article  MATH  Google Scholar 

  19. Strawn RC, Kenwright DN, Ahmad J (1999) Computer visualization of vortex wake systems. AIAA J 37(4):511–512

    Article  Google Scholar 

  20. Jiang M, Machiraju R, Thompson DS (2002) A novel approach to vortex core region detection. In: Joint eurographics IEEE TCVG symposium visualization, pp 217–225

    Google Scholar 

  21. Peikert R, Roth M (1999) The parallel vectors operator–a vector field visualization primitive. In: Proceedings of the 10th IEEE visualization conference (VIS 99) (Washington, DC, USA), IEEE Computer Society, pp 263–270

    Google Scholar 

  22. Roth M, Peikert R (1998) A higher-order method for finding vortex core lines. IEEE Vis 98:143–150

    Google Scholar 

  23. Reinders F, Sadarjoen IA, Vrolijk B, Post FH (2002) Vortex tracking and visualization in a flow past a tapered cylinder. Comput Graph Forum 21:675–682

    Article  Google Scholar 

  24. Sujudi D, Haimes R (1995) Identification of swirling flow in 3D vector fields. In: AIAA 12th computational fluid dynamics conference, paper 95-1715

    Google Scholar 

  25. Weinkauf T, Sahner J, Theisel H, Hege HC (2007) Cores of swirling particle motion in unsteady flows. IEEE Trans Vis Comput Graph 13(6):1759–1766

    Article  Google Scholar 

  26. Burger R, Muigg P, Ilcik M, Doleisch H, Hauser H (2007) Integrating local feature detectors in the interactive visual analysis of flow simulation data. In: Joint eurographics IEEE TCVG symposium visualization, pp 171–178

    Google Scholar 

  27. Banks DC, Singer BA (1995) A predictor-corrector technique for visualizing unsteady flow. IEEE Trans Vis Comput Graphics 1(2):151–163

    Article  Google Scholar 

  28. Stegmaier S, Rist U, Ertl T (2005) Opening the can of worms: an exploration tool for vortical flows. IEEE Vis 05:463–470

    Google Scholar 

  29. Tricoche X, Garth C, Kindlmann G, Deines E, Scheuermann G, Ruetten M, Hansen C (2004) Visualization of intricate flow structures for vortex breakdown analysis. IEEE Vis 04:187–194

    Article  Google Scholar 

  30. Graftieaux L, Michard M, Grosjean N (2001) Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. Measur Sci Technol 12:1422–1429

    Article  Google Scholar 

  31. Jespersen D, Levit C (1991) Numerical simulation of flow past a tapered cylinder. In: 29th Aerospace sciences meeting. AIAA paper 91-0751

    Google Scholar 

  32. Ekaterinaris J, Schiff L (1990) Vortical flows over delta wings and numerical prediction of vortex breakdown. In: AIAA aerospace sciences conference. AIAA paper, 90-0102

    Google Scholar 

Download references

Acknowledgments

This work has been funded by the China National Natural Science Foundation( Grant No. U1035004 and 61003149).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, L., Machiraju, R., Thompson, D., Rangarajan, A., Meng, X. (2014). Adaptive Boosting for Enhanced Vortex Visualization. In: Sun, F., Li, T., Li, H. (eds) Foundations and Applications of Intelligent Systems. Advances in Intelligent Systems and Computing, vol 213. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37829-4_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37829-4_49

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37828-7

  • Online ISBN: 978-3-642-37829-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics