Skip to main content

Neural Network with Type-2 Fuzzy Weights Adjustment for Pattern Recognition of the Human Iris Biometrics

  • Conference paper
Advances in Computational Intelligence (MICAI 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7630))

Included in the following conference series:

Abstract

In this paper a neural network learning method with type-2 fuzzy weight adjustment is proposed. The mathematical analysis of the proposed learning method architecture and the adaptation of type-2 fuzzy weights are presented. The proposed method is based on research of recent methods that handle weight adaptation and especially the use of fuzzy weights. In this work an ensemble neural network of three neural networks and the use of average integration to obtain the final result is presented. The proposed approach is applied to a case of time series prediction to illustrate the advantage of using type-2 fuzzy weights.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cazorla, M., Escolano, F.: Two Bayesian Methods for Junction Detection. IEEE Transaction on Image Processing 12(3), 317–327 (2003)

    Article  MathSciNet  Google Scholar 

  2. Martinez, G., Melin, P., Bravo, D., Gonzalez, F., Gonzalez, M.: Modular Neural Networks and Fuzzy Sugeno Integral for Face and Fingerprint Recognition. In: Abraham, A., de Baets, B., Köppen, M., Nickolay, B. (eds.) Advances in Soft Computing. AISC, vol. 34, pp. 603–618. Springer, Heidelberg (2006)

    Google Scholar 

  3. De Wilde, P.: The Magnitude of the Diagonal Elements in Neural Networks. Neural Networks 10(3), 499–504 (1997)

    Article  Google Scholar 

  4. Salazar, P.A., Melin, P., Castillo, O.: A New Biometric Recognition Technique Based on Hand Geometry and Voice Using Neural Networks and Fuzzy Logic. In: Castillo, O., Melin, P., Kacprzyk, J., Pedrycz, W. (eds.) Soft Computing for Hybrid Intelligent Systems. SCI, vol. 154, pp. 171–186. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Phansalkar, V.V., Sastrq, P.S.: Analysis of the Back-Propagation Algorithm with Momentum. IEEE Transactions on Neural Networks 5(3), 505–506 (1994)

    Article  Google Scholar 

  6. Castillo, O., Melin, P.: Soft Computing for Control of Non-Linear Dynamical Systems. Springer, Heidelberg (2001)

    Book  MATH  Google Scholar 

  7. Zadeh, L.A.: Fuzzy Sets. Journal of Information and Control 8, 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  8. Melin, P., Castillo, O.: Hybrid Intelligent Systems for Pattern Recognition Using Soft Computing, pp. 2–3. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  9. Okamura, M., Kikuchi, H., Yager, R., Nakanishi, S.: Character diagnosis of fuzzy systems by genetic algorithm and fuzzy inference. In: Proceedings of the Vietnam-Japan Bilateral Symposium on Fuzzy Systems and Applications, Halong Bay, Vietnam, pp. 468–473 (1998)

    Google Scholar 

  10. Wang, W., Bridges, S.: Genetic Algorithm Optimization of Membership Functions for Mining Fuzzy Association Rules. Department of Computer Science Mississippi State University, March 2 (2000)

    Google Scholar 

  11. Jang, J., Sun, C., Mizutani, E.: Neuro-Fuzzy and Soft Computing. Prentice Hall, New Jersey (1997)

    Google Scholar 

  12. Castillo, O., Melin, P.: Type-2 Fuzzy Logic Theory and Applications, pp. 29–43. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  13. Castro, J.R., Castillo, O., Melin, P.: An Interval Type-2 Fuzzy Logic Toolbox for Control Applications. In: FUZZ-IEEE, pp. 1–6 (2007)

    Google Scholar 

  14. Castro, J.R., Castillo, O., Melin, P., Rodriguez-Diaz, A.: Building Fuzzy Inference Systems with a New Interval Type-2 Fuzzy Logic Toolbox. Transactions on Computational Science 1, 104–114 (2008)

    Google Scholar 

  15. Hidalgo, D., Castillo, O., Melin, P.: Type-1 and Type-2 Fuzzy Inference Systems as Integration Methods in Modular Neural Networks for Multimodal Biometry and Its Optimization with Genetic Algorithms. In: Castillo, O., Melin, P., Kacprzyk, J., Pedrycz, W. (eds.) Soft Computing for Hybrid Intelligent Systems. SCI, vol. 154, pp. 89–114. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Sanchez, D., Melin, P.: Optimization of modular neural networks and type-2 fuzzy integrators using hierarchical genetic algorithms for human recognition. In: IFSA 2011, OS-414. Surabaya-Bali, Indonesia (2011)

    Google Scholar 

  17. Sepúlveda, R., Castillo, O., Melin, P., Rodriguez, A., Montiel, O.: Experimental study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic. Information Sciences 177(11), 2023–2048 (2007)

    Article  Google Scholar 

  18. Daugman, J.: Statistical Richness of Visual Phase Information: Update on Recognizing Persons by Iris Patterns. International Journal of Computer Vision 45(1), 25–38 (2001)

    Article  MATH  Google Scholar 

  19. Roy, K., Bhattacharya, P.: Iris Recognition with Support Vector Machines. In: Zhang, D., Jain, A.K. (eds.) ICB 2005. LNCS, vol. 3832, pp. 486–492. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  20. Cho, S., Kim, J.: Iris Recognition Using LVQ Neural Network. In: Wang, J., Yi, Z., Żurada, J.M., Lu, B.-L., Yin, H. (eds.) ISNN 2006. LNCS, vol. 3972, pp. 26–33. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Sarhan, A.: Iris Recognition using Discrete Cosine Transform and Artificial Neural Networks. Journal of Computer Science 5, 369–373 (2009)

    Article  Google Scholar 

  22. Abiyev, R., Altunkaya, K.: Neural Network based Biometric Personal Identification with fast iris segmentation. International Journal of Control, Automation and Systems 7(1), 17–23 (2009)

    Article  Google Scholar 

  23. Barbounis, T.G., Theocharis, J.B.: Locally Recurrent Neural Networks for Wind Speed Prediction using Spatial Correlation. Information Sciences 177(24), 5775–5797 (2007)

    Article  Google Scholar 

  24. Gedeon, T.: Additive Neural Networks and Periodic Patterns. Neural Networks 12(4-5), 617–626 (1999)

    Article  Google Scholar 

  25. Meltser, M., Shoham, M., Manevitz, L.: Approximating Functions by Neural Networks: A Constructive Solution in the Uniform Norm. Neural Networks 9(6), 965–978 (1996)

    Article  Google Scholar 

  26. Yeung, D., Chan, P., Ng, W.: Radial Basis Function Network Learning using Localized Generalization Error Bound. Information Sciences 179(19), 3199–3217 (2009)

    Article  MATH  Google Scholar 

  27. Casasent, D., Natarajan, S.: A Classifier Neural Net with Complex-Valued Weights and Square-Law Nonlinearities. Neural Networks 8(6), 989–998 (1995)

    Article  Google Scholar 

  28. Draghici, S.: On the Capabilities of Neural Networks using Limited Precision Weights. Neural Networks 15(3), 395–414 (2002)

    Article  Google Scholar 

  29. Neville, R.S., Eldridge, S.: Transformations of Sigma–Pi Nets: Obtaining Reflected Functions by Reflecting Weight Matrices. Neural Networks 15(3), 375–393 (2002)

    Article  Google Scholar 

  30. Yam, J., Chow, T.: A Weight Initialization Method for Improving Training Speed in Feedforward Neural Network. Neurocomputing 30(1-4), 219–232 (2000)

    Article  Google Scholar 

  31. Hagan, M.T., Demuth, H.B., Beale, M.H.: Neural Network Design, p. 736. PWS Publishing, Boston (1996)

    Google Scholar 

  32. Fletcher, R., Reeves, C.M.: Function Minimization by Conjugate Gradients. Computer Journal 7, 149–154 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  33. Powell, M.J.D.: Restart Procedures for the Conjugate Gradient Method. Mathematical Programming 12, 241–254 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  34. Beale, E.M.L.: A Derivation of Conjugate Gradients. In: Lootsma, F.A. (ed.) Numerical Methods for Nonlinear Optimization, pp. 39–43. Academic Press, London (1972)

    Google Scholar 

  35. Moller, M.F.: A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning. Neural Networks 6, 525–533 (1993)

    Article  Google Scholar 

  36. Kamarthi, S., Pittner, S.: Accelerating Neural Network Training using Weight Extrapolations. Neural Networks 12(9), 1285–1299 (1999)

    Article  Google Scholar 

  37. Ishibuchi, H., Morioka, K., Tanaka, H.: A Fuzzy Neural Network with Trapezoid Fuzzy Weights, Fuzzy Systems. In: IEEE World Congress on Computational Intelligence, vol. 1, pp. 228–233 (1994)

    Google Scholar 

  38. Ishibuchi, H., Tanaka, H., Okada, H.: Fuzzy Neural Networks with Fuzzy Weights and Fuzzy Biases. In: IEEE International Conference on Neural Networks, vol. 3, pp. 1650–165 (1993)

    Google Scholar 

  39. Feuring, T.: Learning in Fuzzy Neural Networks. In: IEEE International Conference on Neural Networks, vol. 2, pp. 1061–1066 (1996)

    Google Scholar 

  40. Castro, J., Castillo, O., Melin, P., Rodríguez-Díaz, A.: A Hybrid Learning Algorithm for a Class of Interval Type-2 Fuzzy Neural Networks. Information Sciences 179(13), 2175–2193 (2009)

    Article  MATH  Google Scholar 

  41. Sánchez, O., González, J.: Access Control Based on Iris Recognition. Technological University Corporation of Bolívar, Faculty of Electrical Engineering, Electronics and Mechatronics, Cartagena of Indias, Monography, pp. 1–137 (November 2003)

    Google Scholar 

  42. Muron, A., Pospisil, J.: The human iris structure and its usages, Czech Republic, Physica, pp. 89–95 (2000)

    Google Scholar 

  43. Ma, L., Wang, Y., Tan, T.: Iris recognition based on multichannel Gabor filtering. In: 5th Asian Conference on Computer Vision, ACCV 2002, Melbourne, Australia, vol. 1, pp. 279–283 (2002)

    Google Scholar 

  44. Database of Human Iris. Institute of Automation of Chinese Academy of Sciences (CASIA). Found on the Web page, http://www.cbsr.ia.ac.cn/english/IrisDatabase.asp

  45. Masek, L., Kovesi, P.: MATLAB Source Code for a Biometric Identification System Based on Iris Patterns. The School of Computer Science and Software Engineering, The University of Western Australia (2003)

    Google Scholar 

  46. Gaxiola, F., Melin, P., López, M.: Modular Neural Networks for Person Recognition using the Contour Segmentation of the Human Iris Biometric Measurement. In: Melin, P., Kacprzyk, J., Pedrycz, W. (eds.) Soft-Computing for Recognition based on Biometrics. SCI, vol. 312, pp. 137–153. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gaxiola, F., Melin, P., Valdez, F., Castillo, O. (2013). Neural Network with Type-2 Fuzzy Weights Adjustment for Pattern Recognition of the Human Iris Biometrics. In: Batyrshin, I., Mendoza, M.G. (eds) Advances in Computational Intelligence. MICAI 2012. Lecture Notes in Computer Science(), vol 7630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37798-3_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37798-3_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37797-6

  • Online ISBN: 978-3-642-37798-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics