Advertisement

Stability Analysis Methods

  • Germán A. RamosEmail author
  • Ramon Costa-Castelló
  • Josep M. Olm
Chapter
  • 1k Downloads
Part of the Lecture Notes in Control and Information Sciences book series (LNCIS, volume 446)

Summary

Repetitive control is a widely used strategy applied in the tracking/rejection of periodic signals, however, the performance of this controller can be seriously affected when the frequency of the reference/disturbance signal varies or is uncertain. One approach that overcomes this problem is the adaptation of the controller sampling period, nevertheless, the system framework changes from a Linear Time Invariant to Linear Time-Varying and the closed-loop stability can be compromised. Indeed, the proposals applying this scheme in repetitive control do not provide formal stability proofs. This work presents two different methodologies aimed at analyse the system stability under these conditions. The first one uses a Linear Matrix Inequality gridding approach which provides necessary conditions for the closed-loop Bounded Input Bounded Output stability of the system. The second one applies robust control techniques in order to analyse the stability and yields sufficient stability conditions. Both methodologies, entails a frequency variation interval for which the system stability can be assured.

Keywords

Linear Time Invariant Repetitive Control Stability Analysis Method Repetitive Controller Uniform Exponential Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apkarian, P., Adams, R.: Advanced gain-scheduling techniques for uncertain systems. IEEE Transactions on Control Systems Technology 6(1), 21–32 (1998)CrossRefGoogle Scholar
  2. 2.
    Fridman, E., Seuret, A., Richard, J.: Robust sampled-data stabilization of linear systems: An input delay approach. Automatica 40(8), 1441–1446 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Fujioka, H.: Stability analysis for a class of networked-embedded control systems: A discrete-time approach. In: Proceedings of the American Control Conference, pp. 4997–5002 (2008)Google Scholar
  4. 4.
    Fujioka, H.: A discrete-time approach to stability analysis of systems with aperiodic sample-and-hold devices. IEEE Transactions Automat. Control 54(10), 2440–2445 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Fujioka, H.: Stability analysis of systems with aperiodic sample-and-hold devices. Automatica 45(3), 771–775 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Hanson, R.D., Tsao, T.-C.: Periodic sampling interval repetitive control and its application to variable spindle speed noncircular turning process. Journal of Dynamic Systems, Measurement, and Control 122(3), 560–566 (2000)CrossRefGoogle Scholar
  7. 7.
    Hillerström, G.: On Repetitive Control. PhD thesis, Lulea University of Technology (November 1994)Google Scholar
  8. 8.
    Mirkin, L.: Some remarks on the use of time-varying delay to model sample-and-hold circuits. IEEE Transactions Autom. Control 52(6), 1109–1112 (2007)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Naghshtabrizi, P., Hespanha, J., Teel, A.: On the robust stability and stabilization of sampled-data systems: A hybrid system approach. In: Proceedings of the 45th IEEE Confecence on Decision and Control, pp. 4873–4878 (2006)Google Scholar
  10. 10.
    Rugh, W.: Linear system theory, 2nd edn. Prentice-Hall, Inc., Upper Saddle River (1996)zbMATHGoogle Scholar
  11. 11.
    Sala, A.: Computer control under time-varying sampling period: An LMI gridding approach. Automatica 41(12), 2077–2082 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Steinbuch, M.: Repetitive control for systems with uncertain period-time. Automatica 38(12), 2103–2109 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Suh, Y.: Stability and stabilization of nonuniform sampling systems. Automatica 44(12), 3222–3226 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Tsao, T.-C., Qian, Y.-X., Nemani, M.: Repetitive control for asymptotic tracking of periodic signals with an unknown period. Journal of Dynamic Systems, Measurement, and Control 122(2), 364–369 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Germán A. Ramos
    • 1
    Email author
  • Ramon Costa-Castelló
    • 2
  • Josep M. Olm
    • 3
  1. 1.Department of Electrical and Electronic EngineeringUniversidad Nacional de Colombia BogotáColombia
  2. 2.Escola Tècnica Superior d’Enginyeria Industrial de Barcelona (ETSEIB)Universitat Politècnica de Catalunya (UPC) BarcelonaSpain
  3. 3.Department of Applied Mathematics IV Universitat Politècnica de CatalunyaCastelldefelsSpain

Personalised recommendations