Skip to main content

Modeling Horizontal Localization of Complex Sounds in the Impaired and Aided Impaired Auditory System

  • Chapter
The Technology of Binaural Listening

Part of the book series: Modern Acoustics and Signal Processing ((MASP))

Abstract

Background noise, room reflections, or interfering sound sources represent a challenge for daily one-to-one communication, particularly for hearing-impaired listeners, even when wearing hearing aid devices. Through a modeling approach, this project investigated how peripheral hearing loss impairs the processing of spatial cues in adverse listening conditions. A binaural model in which the peripheral processor can be tuned to account for individual hearing loss was developed to predict localization in anechoic and reverberant rooms. Hearing impairment was accounted for by a loss of sensitivity, a loss of cochlear compression and reduced frequency selectivity. A spatial cue-selection mechanism processed the output of the binaural equalization-&-cancellation processor to evaluate the localization information’s reliability based on interaural coherence. The simulations in anechoic environment suggested that the sound-source-location estimates become less reliable and blurred in the case of reduced audibility. Simulations in rooms suggested that the broadening of the auditory filters reduces the fidelity of spectral cues and affects the internal representation of interaural level differences. The model-based analysis of hearing-aid processing showed that amplification and compression used to recover audibility also partially recovered the internal representation of the spatial cues in the impaired auditory system. Future work is needed to extend and experimentally validate the model. Overall, the current model represents a first step towards the development of a dedicated research tool for investigating and understanding the processing of spatial cues in adverse listening conditions, with a long-term goal of contributing to solving the cocktail-party problem for normal hearing and hearing-impaired listeners

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term interaural coherence denotes the amplitude of the normalized interaural cross-correlation function for maximum ITDs of \(\pm \)1 ms.

References

  1. A. W. Bronkhorst, The Cocktail party phenomenon: A review of research on speech intelligebility in multiple talker conditions, Acta Acustica united with Acustica, 86:117–128, 2000.

    Google Scholar 

  2. H. S. Colburn, Computational models of binaural processing In: Auditory Computation, H. Hawkins and T. McMullen, Eds., Springer, Berlin, 1996, 332–400.

    Google Scholar 

  3. J. Blauert, Spatial Hearing: the psychophysics of human sound localization, The MIT Press, 1997.

    Google Scholar 

  4. M. Dietz, S. D. Ewert and V. Hohmann, Auditory model based direction estimation of concurrent speakers from binaural signals, Speech Comm., 53:592–605, 2011.

    Google Scholar 

  5. M. D. Good and R. H. Gilkey, Sound localization in noise: The effect of signal-to-noise ratio, Am. J. Oto., 99:1108–1117, 1996.

    Google Scholar 

  6. K. S. Abouchacra, D. C. Emanuel, I. M. Blood and T. R. Letowski, Spatial perception of speech in various signal to noise ratios, Ear Hear., 19:298–309, 1998.

    Google Scholar 

  7. C. Lorenzi, S. Gatehouse and C. Lever, Sound localization in noise in normal-hearing listeners, J. Acoust. Soc. Am., 105:1810–1820, 1999.

    Google Scholar 

  8. M. L. Hawley, R. Y. Litovsky and H. S. Colburn, Speech intelligibility and localization in a multi-source environment, J. Acoust. Soc. Am., 105:3436–3448, 1999.

    Google Scholar 

  9. R. Drullman and A. W. Bronkhorst, Multichannel speech intelligibility and speaker recognition using monaural, binaural and 3D auditory presentation, J. Acoust. Soc. Am., 107:2224–2235, 2000.

    Google Scholar 

  10. E. H. A. Langendijk, D. J. Kistler and F. L. Wightman, Sound localization in the presence of one or two distractors, J. Acoust. Soc. Am., 109:2123–2134, 2001.

    Google Scholar 

  11. N. Kopco, V. Best and S. Carlile, Speech localization in a multitalker mixture, J. Acoust. Soc. Am., vol. 127:1450–1457, 2010.

    Google Scholar 

  12. N. Kopco and B. Shinn-Cunningham, Auditory Localization in Rooms: Acoustic analysis and behavior, in 32nd Intern. Acoust. Conf. - EAA symp., Slovakia., 2002.

    Google Scholar 

  13. M. Rychtáriková, T. van den Bogaert, G. Vermeir and J. Wouters, Binaural sound source localization in real and virtual rooms, J. Aud. Eng. Soc. 57:205–220, 2009.

    Google Scholar 

  14. M. Rychtáriková, T. van den Bogaert, G. Vermeir and J. Wouters, Perceptual validation of virtual room acoustics: Sound localisation and speech understanding, Appl. Acoust., 72:196–204, 2011.

    Google Scholar 

  15. J. M. Buchholz, V. Best and G. Keidser, Auditory localization in reverberant multi-source environments by normal-hearing and hearing-impaired listeners, in IHCON Conf., Lake Tahoe, USA, 2012.

    Google Scholar 

  16. J. Raatgever, On the binaural processing of stimuli with different interaural phase relations, PhD Thesis, Techn. Univ. Delft, The Netherlands, 1980.

    Google Scholar 

  17. R. M. Stern, A. S. Zeiberg and C. Trahiotis, Lateralization of complex binaural stimuli: A weighted-image model, J. Acoust. Soc. Am., 84:156–165, 1988.

    Google Scholar 

  18. N. Le Goff, J. M. Buchholz and T. Dau, Spectral integration of interaural time differences in auditory localization, in Proc. 21st Intern. Congr. Acoust., ICA 2013, 2013.

    Google Scholar 

  19. N. Le Goff, “Processing interaural differences in lateralization and binaural signal detection”, PhD thesis, Techn. Univ. Eindhoven, The Netherland, 2010.

    Google Scholar 

  20. J. Nix and V. Hohmann, Sound source localization in real sound fields based on empirical statistics of interaural parameters, J. Acoust. Soc. Am., 119:463–479, 2006.

    Google Scholar 

  21. R. Y. Litovsky, H. S. Colburn, W. A. Yost and S. J. Guzman, The precedence effect, J. Acoust. Soc. Am., 106:1633–1654, 1999.

    Google Scholar 

  22. W. Lindemann, Extension of a binaural cross-correlation model by means of contralateral inhibition. I. Simulation of lateralization of stationary signals., J. Acoust. Soc. Am., 80:1608–1622, 1986.

    Google Scholar 

  23. C. Faller and J. Merimaa, Source localization in complex listening situations: Selection of binaural cues based on interaural coherence, J. Acoust. Soc. Am., 116: 3075–3089, 2004.

    Google Scholar 

  24. N. I. Durlach, C. L. Thompson and H. S. Colburn, Binaural interaction of impaired listeners. A review of past research, Audiology, 20:181–211, 1981.

    Google Scholar 

  25. B. C. J. Moore, Cochlear Hearing Loss, Wiley, 2007.

    Google Scholar 

  26. D. Byrne and W. Noble, Optimizing sound localization with hearing aids, Trends Amplif., 3:51–73, 1998.

    Google Scholar 

  27. H. Dillon, Hearing Aids, Boomrang Press, 2012.

    Google Scholar 

  28. D. B. Hawkins and F. L. Wightman, Interaural time discrimination ability of listeners with sensorineural hearing loss, Audiology, 19:495–507, 1980.

    Google Scholar 

  29. L. Smith-Olinde, J. Koehnke and J. Besing, Effects of sensorineural hearing loss on interaural discrimination and virtual localization, J. Acoust. Soc. Am., 103:2084–2099, 1998.

    Google Scholar 

  30. H. S. Colburn, Binaural interaction and localization with various hearing impairments, Scand. Audiol. Suppl., 15:27–45, 1982.

    Google Scholar 

  31. K. J. Gabriel, J. Koehnke and H. S. Colburn, Frequency dependence of binaural performance in listeners with impaired binaural hearing, J. Acoust. Soc. Am., 91: 336–347, 1992.

    Google Scholar 

  32. R. Haeusler, H. S. Colburn and E. Marr, Sound localization in subjects with impaired hearing. Spatial-discrimination and interaural-discrimination tests, Acta Otolaryngol. Suppl., 400:1–62, 1983.

    Google Scholar 

  33. U. Rosenhall, The influence of hearing loss on directional hearing, Scand. Audiol., 14:187–189, 1985.

    Google Scholar 

  34. W. Noble, D. Byrne and B. Lepage, Effects on sound localization of configuration and type of hearing impairment, J. Acoust. Soc. Am., 95:992–1005, 1994.

    Google Scholar 

  35. W. Noble, D. Byrne and K. T. Horst, Auditory localization, detection of spatial separateness, and speech hearing in noise by hearing impaired listeners, J. Acoust. Soc. Am., 102:2343–2352, 1995.

    Google Scholar 

  36. C. Lorenzi, S. Gatehouse and C. Lever, Sound localization in noise in hearing-impaired listeners, J. Acoust. Soc. Am., 105:3454–3463, 1999.

    Google Scholar 

  37. M. A. Akeroyd and F. H. Guy, The effect of hearing impairment on localization dominance for single-word stimuli, J. Acoust. Soc. Am., 130:312–323, 2011.

    Google Scholar 

  38. B. U. Seeber and E. R. Hafter, Failure of the precedence effect with a noise-band vocoder, J. Acoust. Soc. Am., 129:1509–1521, 2011.

    Google Scholar 

  39. R. R. Leech, B. Gygi, J. Aydelott and F. Dick, Informational factors in identifying environmental sounds in natural auditory scenes, J. Acoust. Soc. Am., 126:3147–3155, 2009.

    Google Scholar 

  40. W. Noble, K. Ter-Horst and D. Byrne, Disabilities and handicaps associated with impaired auditory localization, J. Am. Acad. Audiol., 6:129–140, 1995.

    Google Scholar 

  41. W. Noble and S. Gatehouse, Effects of bilateral versus unilateral hearing aid fitting on abilities measured by the speech, spatial, and qualities of hearing scale (SSQ), Int. J. Audiol., 45:172–181, 2006.

    Google Scholar 

  42. M. Boymans, S. T. Govers, S. E. Kramer, J. M. Festen and W. A. Dreschler, Candidacy for bilateral hearing aids: a retrospective multicenter study, J. Speech Language Hear. Res., 52:130–140, 2009.

    Google Scholar 

  43. T. Van den Bogaert, T. J. Klasen, M. Moonen, L. V. Deun and J. Wouters, Horizontal localization with bilateral hearing aids: Without is better than with, J. Acoust. Soc. Am., 119:515–526, 2006.

    Google Scholar 

  44. G. Keidser, K. Rohrseits, H. Dillon, V. Hamacher, L. Carter, U. Rass and E. Convery, The effect of multi-channel wide dynamic range compression, noise reduction, and the directional microphone on horizontal localization performance in hearing aid wearers, Inter. J. Audiol., 45:563–579, 2006.

    Google Scholar 

  45. T. Van den Bogaert, E. Carette and J. Wouters, Sound source localization using hearing aids with microphones placed behind-the-ear, in-the-canal, and in-the-pinna, Inter. J. Audiol., 50:164–176, 2011.

    Google Scholar 

  46. V. Best, S. Kalluri, S. McLachlan, S. Valentine, B. Edwards and S. Carlile, A comparison of CIC and BTE hearing aids for three-dimensional localization of speech, Int. J. Audiol., 49:723–732, 2010.

    Google Scholar 

  47. W. Noble, S. Sinclair and D. Byrn, Improvement in aided sound localization with open earmolds: observations in people with high-frequency hearing loss, J. Am. Acad. Audiol., 9: 25–34, 1998.

    Google Scholar 

  48. T. Van den Bogaert, S. Doclo, J. Wouters and M. Moonen, The effect of multi-microphone noise reduction systems on sound source localization by users of binaural hearing aids, J. Acoust. Soc. Am., 124:484–497, 2008.

    Google Scholar 

  49. T. J. Klasen, T. V. d. B., M. Moonen and J. Wouters, Binaural noise reduction algorithms for hearing aids that preserve interaural time delay cues, IEEE Trans. Signal Process, 55:1579–1585, 2007.

    Google Scholar 

  50. J. Mejia, G. Keidser, H. Dillon, CV. Nguyen, and E. Johnson, The effect of a linked bilateral noise reduction processing on speech in noise performance. In Speech Perception and Auditory Disorders, ed. by T. Dau, J.C. Dalsgaard, M.L. Jepsen, and T. Poulsen, 2011

    Google Scholar 

  51. E. A. Lopez-Poveda and R. Meddis, A human nonlinear cochlear filterbank, J. Acoust. Soc. Am., 110:3107–3118, 2001.

    Google Scholar 

  52. J. Breebaart, S. van de Par and A. Kohlrausch, Binaural processing model based on contralateral inhibition. I. Model structure, J. Acoust. Soc. Am., 110:1074–1088, 2001.

    Google Scholar 

  53. R. L. Goode, M. L. Killion, K. Nakamura and S. Nishihara, New knowledge about the function of the human middle ear: Development of an improved analogue model, Am. J. Otol., 15:145–154, 1994.

    Google Scholar 

  54. M. L. Jepsen, S. D. Ewert and T. Dau, A computational model of human auditory signal processing and perception, J. Acoust. Soc. Am., 124:422–438, 2008.

    Google Scholar 

  55. T. Dau, D. Püschel and A. Kohlrausch, A quantitative model of the “effective” signal processing in the auditory system. II. Simulations and measurements, J. Acoust. Soc. Am., 99:3623–3631, 1996.

    Google Scholar 

  56. T. Dau, B. Kollmeier and A. Kohlrausch, Modeling auditory processing of amplitude modulation. I. Detection and masking with narrow banc carriers, J. Acoust. Soc. Am., 102:2892–2905, 1997.

    Google Scholar 

  57. M. L. Jepsen and T. Dau, Characterizing auditory processing and perception in individual listeners with sensorineural hearing loss, J. Acoust. Soc. Am., 129:262–281, 2011.

    Google Scholar 

  58. ISO 226:2003 Normal equal-loudness-level contours. International Organization for Standardization, ISO, Geneva.

    Google Scholar 

  59. A. Kohlrausch, J. Braasch, D. Kolossa and J. Blauert. An introduction to binaural processing. In J. Blauert, editor, The technology of binaural listening, chapter 1. Springer, Berlin-Heidelberg-New York NY, 2013.

    Google Scholar 

  60. N. Durlach, Equalization and cancellation theory of binaural masking level-level differences, J. Acoust. Soc. Am., 35:1205–1218, 1963.

    Google Scholar 

  61. D. W. Grantham and F. L. Wightman, Detectability of varying interaural temporal differences, J. Acoust. Soc. Am., 63: 511–523, 1978.

    Google Scholar 

  62. R. Klumpp and H. Eady, Some Measurements of Interaural Time Difference Thresholds, J. Acoust. Soc. Am., 28:859–860, 1956.

    Google Scholar 

  63. IEEE recommended practice for speech quality measurements, 1969.

    Google Scholar 

  64. B.C. Moore, An introduction to the psychology of hearing, \(4^{\rm th}\) Ed. Academic Press, London, 1997.

    Google Scholar 

  65. W. E. Feddersen, T. T. Sandel, D. C. Teas and L. A. Jeffress, Localization of High-Frequency Tones, J. Acoust. Soc. Am., 29:988–991, 1957.

    Google Scholar 

  66. A. Schlesinger and C. Luther, Optimization of binaural algorithms for maximum predicted speech intelligibility. In J. Blauert, editor, The technology of binaural listening, chapter 11. Springer, Berlin-Heidelberg-New York NY, 2013.

    Google Scholar 

  67. C. Orinos and J. Buchholz, Measurement of a complete set of HRTFs for in-ear and hearing aid microphones on a Head and Torso Simulator, J. Acoust. Soc. Am., submitted, 2013.

    Google Scholar 

  68. H. Kutruff, Room acoustics, Elsevier, 1973.

    Google Scholar 

  69. B. R. Glasberg and B. C. J. Moore, Derivation of auditory filter shapes from notched noise data, Hear. Res., 47:103–138, 1990.

    Google Scholar 

  70. T. Baer and B. C. J. Moore, Effects of spectral smearing on the intelligibility of sentences in noise, J. Acoust. Soc. Am., 94:1229–1241, 1993.

    Google Scholar 

  71. J. M. Buchholz, A real-time hearing-aid research platform (HARP): realization, calibration, and evaluation, Acta Acustica united with Acustica, under revision, 2013.

    Google Scholar 

  72. J. Breebaart, S. van de Par and A. Kohlrausch, Binaural processing model based on contralateral inhibition. II. Dependence on spectral parameters, J. Acoust. Soc. Am., 110:1089–1104, 2001.

    Google Scholar 

  73. J. M. Kates, Digital Hearing Aids, Plural Publishing, 2008.

    Google Scholar 

Download references

Acknowledgments

The authors are indebted to two anonymous external reviewers for constructive suggestions with regard to an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Le Goff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Le Goff, N., Buchholz, J.M., Dau, T. (2013). Modeling Horizontal Localization of Complex Sounds in the Impaired and Aided Impaired Auditory System. In: Blauert, J. (eds) The Technology of Binaural Listening. Modern Acoustics and Signal Processing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37762-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37762-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37761-7

  • Online ISBN: 978-3-642-37762-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics