Skip to main content

Part of the book series: Modern Acoustics and Signal Processing ((MASP))

Abstract

The Auditory Modeling Toolbox, AMToolbox, is a Matlab/Octave toolbox for developing and applying auditory perceptual models with a particular focus on binaural models. The philosophy behind the AMToolbox is the consistent implementation of auditory models, good documentation, and user-friendly access in order to allow students and researchers to work with and to advance existing models. In addition to providing the model implementations, published human data and model demonstrations are provided. Further, model implementations can be evaluated by running so-called experiments aimed at reproducing results from the corresponding publications. AMToolbox includes many of the models described in this volume. It is freely available from http://amtoolbox.sourceforge.net

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Much of the cooperation on the AMToolbox takes place within the framework of the AabbA group, an open group of scientist dealing with aural assessment by means of binaural algorithms.

  2. 2.

    http://www.gnu.org/licenses/gpl.html, last viewed on 9.1.2013.

  3. 3.

    http://sourceforge.net/projects/amtoolbox, last viewed on 9.1.2013.

  4. 4.

    http://www.mathworks.de/products/matlab/ last viewed on 9.1.2013.

  5. 5.

    http://www.gnu.org/software/octave/, last viewed on 9.1.2013.

  6. 6.

    http://git-scm.com/, last viewed on 11.1.2013.

  7. 7.

    http://amtoolbox.sourceforge.net/notes/amtnote003.pdf, last viewed on 9.1.2013.

  8. 8.

    The current up-to-date status of the AMToolbox can be found under http://amtoolbox.sourceforge.net/notes/amtnote006.pdf, last viewed on 14.2.2013.

  9. 9.

    http://www.gnu.org/philosophy/free-sw.html, last viewed on 9.1.2013.

  10. 10.

    from http://amtoolbox.sourceforge.net, last viewed on 9.1.2013.

  11. 11.

    see http://amtoolbox.sourceforge.net/doc/ last viewed on 9.1.2013.

  12. 12.

    see http://amtoolbox.sourceforge.net/notes/amtnote006.pdf, last viewed on 9.1.2013.

References

  1. American National Standards Institute, New York. Methods for calculation of the speech intelligibility index, ANSI S3.5-1997 edition, 1997.

    Google Scholar 

  2. C. Antweiler, A. Telle, P. Vary, and G. Enzner. Perfect-Sweep NLMS for Time-Variant Acoustic System Identification. In Proc. Intl. Conf. Acoustics, Speech, and Signal Processing, ICASSP, pages 517–529, Kyoto, Japan, 2012.

    Google Scholar 

  3. R. Baumgartner, P. Majdak, and B. Laback. Assessment of sagittal-plane sound-localization performance in spatial-audio applications. In J. Blauert, editor, The technology of binaural listening, chapter 4. Springer, Berlin-Heidelberg-New York NY, 2013.

    Google Scholar 

  4. R. A. Bentler and C. V. Pavlovic. Transfer Functions and Correction Factors used in Hearing Aid Evaluation and Research. Ear Hear, 10:58–63, 1989.

    Google Scholar 

  5. L. Bernstein, S. van de Par, and C. Trahiotis. The normalized interaural correlation: Accounting for NoS\(\pi \) thresholds obtained with Gaussian and “low-noise” masking noise. J Acoust Soc Am, 106:870–876, 1999.

    Google Scholar 

  6. J. Breebaart, S. van de Par, and A. Kohlrausch. Binaural processing model based on contralateral inhibition. I. Model structure. J Acoust Soc Am, 110:1074–1088, 2001.

    Google Scholar 

  7. J. Breebaart, S. van de Par, and A. Kohlrausch. Binaural processing model based on contralateral inhibition. II. Dependence on spectral parameters. J Acoust Soc Am, 110:1089–1104, 2001.

    Google Scholar 

  8. J. Breebaart, S. van de Par, and A. Kohlrausch. Binaural processing model based on contralateral inhibition. III. Dependence on temporal parameters. J Acoust Soc Am, 110:1105–1117, 2001.

    Google Scholar 

  9. J. Buckheit and D. Donoho. Wavelab and Reproducible Research, pages 55–81. Springer, New York NY, 1995.

    Google Scholar 

  10. J. Claerbout. Electronic documents give reproducible research a new meaning. Expanded Abstracts, Soc Expl Geophys, 92:601–604, 1992.

    Google Scholar 

  11. J. Culling. Evidence specifically favoring the equalization-cancellation theory of binaural unmasking. J Acoust Soc Am, 122:2803–2813, 2007.

    Google Scholar 

  12. J. Culling, S. Jelfs, and M. Lavandier. Mapping Speech Intelligibility in Noisy Rooms. In Proc. 128th Conv. Audio Enginr. Soc. (AES), page Convention paper 8050, 2010.

    Google Scholar 

  13. T. Dau, B. Kollmeier, and A. Kohlrausch. Modeling auditory processing of amplitude modulation. I. Detection and masking with narrow-band carriers. J Acoust Soc Am, 102:2892–2905, 1997.

    Google Scholar 

  14. T. Dau, B. Kollmeier, and A. Kohlrausch. Modeling auditory processing of amplitude modulation. II. Spectral and temporal integration. J Acoust Soc Am, 102:2906–2919, 1997.

    Google Scholar 

  15. T. Dau, D. Püschel, and A. Kohlrausch. A quantitative model of the effective signal processing in the auditory system. I. Model structure. J Acoust Soc Am, 99:3615–3622, 1996.

    Google Scholar 

  16. T. Dau, D. Püschel, and A. Kohlrausch. A quantitative model of the “effective” signal processing in the auditory system. II. Simulations and measurements. J Acoust Soc Am, 99:3623–3631, 1996.

    Google Scholar 

  17. M. Dietz, S. D. Ewert, and V. Hohmann. Lateralization of stimuli with independent fine-structure and envelope-based temporal disparities. J Acoust Soc Am, 125:1622–1635, 2009.

    Google Scholar 

  18. M. Dietz, S. D. Ewert, and V. Hohmann. Auditory model based direction estimation of concurrent speakers from binaural signals. Speech Comm, 53:592–605, 2011.

    Google Scholar 

  19. M. Dietz, S. D. Ewert, V. Hohmann, and B. Kollmeier. Coding of temporally fluctuating interaural timing disparities in a binaural processing model based on phase differences. Brain Res, 1220:234–245, 2008.

    Google Scholar 

  20. F. Dubbelboer and T. Houtgast. The concept of signal-to-noise ratio in the modulation domain and speech intelligibility. J Acoust Soc Am, 124:3937–3946, 2008.

    Google Scholar 

  21. N. I. Durlach. Binaural signal detection: equalization and cancellation theory. In J. V. Tobias, editor, Foundations of Modern Auditory Theory. Vol. II, pages 369–462. Academic, New York, 1972.

    Google Scholar 

  22. C. Elberling, J. Callø, and M. Don. Evaluating auditory brainstem responses to different chirp stimuli at three levels of stimulation. J Acoust Soc Am, 128:215–223, 2010.

    Google Scholar 

  23. G. Enzner. Analysis and optimal control of LMS-type adaptive filtering for continuous-azimuth acquisition of head related impulse responses. In Proc. Intl. Conf. Acoustics, Speech, and Signal Processing, ICASSP, pages 393–396, Las Vegas NV, 2008.

    Google Scholar 

  24. G. Enzner. 3D-continuous-azimuth acquisition of head-related impulse responses using multi-channel adaptive filtering. In Proc. IEEE Worksh. Appl. of Signal Process. to Audio and Acoustics, WASPAA, pages 325–328, New Paltz NY, 2009.

    Google Scholar 

  25. S. Ewert and T. Dau. Characterizing frequency selectivity for envelope fluctuations. J Acoust Soc Am, 108:1181–1196, 2000.

    Google Scholar 

  26. G. Fant. Analysis and synthesis of speech processes. In B. Malmberg, editor, Manual of phonetics. North-Holland, Amsterdam, 1968.

    Google Scholar 

  27. R. Fassel and D. Püschel. Modulation detection and masking using deterministic and random maskers, pages 419–429. Universitätsgesellschaft, Oldenburg, 1993.

    Google Scholar 

  28. D. Gabor. Theory of communication. J IEE, 93:429–457, 1946.

    Google Scholar 

  29. E. Georganti, T. May, S. van de Par, and J. Mourjopoulos. Sound source distance estimation in rooms based on statistical properties of binaural signals. IEEE Trans Audio Speech Lang Proc, submitted.

    Google Scholar 

  30. E. Georganti, T. May, S. van de Par, and J. Mourjopoulos. Extracting sound-source-distance information from binaural signals. In J. Blauert, editor, The technology of binaural listening, chapter 7. Springer, Berlin-Heidelberg-New York NY, 2013.

    Google Scholar 

  31. B. R. Glasberg and B. Moore. Derivation of auditory filter shapes from notched-noise data. Hear Res, 47:103–138, 1990.

    Google Scholar 

  32. R. Goode, M. Killion, K. Nakamura, and S. Nishihara. New knowledge about the function of the human middle ear: development of an improved analog model. Am J Otol, 15:145–154, 1994.

    Google Scholar 

  33. L. Han and T. Poulsen. Equivalent threshold sound pressure levels for Sennheiser HDA 200 earphone and Etymotic Research ER-2 insert earphone in the frequency range 125 Hz to 16 kHz. Scandinavian Audiology, 27:105–112, 1998.

    Google Scholar 

  34. M. Hofman and J. Van Opstal. Binaural weighting of pinna cues in human sound localization. Exp Brain Res, 148:458–70, 2003.

    Google Scholar 

  35. V. Hohmann. Frequency analysis and synthesis using a gammatone filterbank. Acta Acust./ Acustica, 88:433–442, 2002.

    Google Scholar 

  36. T. Houtgast, H. Steeneken, and R. Plomp. Predicting speech intelligibility in rooms from the modulation transfer function. i. general room acoustics. Acustica, 46:60–72, 1980.

    Google Scholar 

  37. ISO 226:2003. Acoustics - Normal equal-loudness-level contours. International Organization for Standardization, Geneva, Switzerland, 2003.

    Google Scholar 

  38. ISO 389–2:1994(E). Acoustics - Reference zero for the calibration of audiometric equipment - Part 2: Reference equivalent threshold sound pressure levels for pure tones and insert earphones. International Organization for Standardization, Geneva, Switzerland, 1994.

    Google Scholar 

  39. ISO 389–5:2006. Acoustics - Reference zero for the calibration of audiometric equipment - Part 5: Reference equivalent threshold sound pressure levels for pure tones in the frequency range 8 kHz to 16 kHz. International Organization for Standardization, Geneva, Switzerland, 2006.

    Google Scholar 

  40. ISO 389–8:2004. Acoustics - Reference zero for the calibration of audiometric equipment - Part 8: Reference equivalent threshold sound pressure levels for pure tones and circumaural earphones. International Organization for Standardization, Geneva, Switzerland, 2004.

    Google Scholar 

  41. L. Jeffress. A place theory of sound localization. J Comp Physiol Psych, 41:35–39, 1948.

    Google Scholar 

  42. S. Jelfs, J. Culling, and M. Lavandier. Revision and validation of a binaural model for speech intelligibility in noise. Hear Res, 2011.

    Google Scholar 

  43. J. Jetzt. Critical distance measurement of rooms from the sound energy spectral response. J Acoust Soc Am, 65:1204–1211, 1979.

    Google Scholar 

  44. S. Jørgensen and T. Dau. Predicting speech intelligibility based on the signal-to-noise envelope power ratio after modulation-frequency selective processing. J Acoust Soc Am, 130:1475–1487, 2011.

    Google Scholar 

  45. E. Langendijk and A. Bronkhorst. Contribution of spectral cues to human sound localization. J Acoust Soc Am, 112:1583–1596, 2002.

    Google Scholar 

  46. M. Lavandier and J. Culling. Prediction of binaural speech intelligibility against noise in rooms. J Acoust Soc Am, 127:387–399, 2010.

    Google Scholar 

  47. W. Lindemann. Extension of a binaural cross-correlation model by contralateral inhibition. I. Simulation of lateralization for stationary signals. J Acoust Soc Am, 80:1608–1622, 1986.

    Google Scholar 

  48. E. Lopez-Poveda and R. Meddis. A human nonlinear cochlear filterbank. J Acoust Soc Am, 110:3107–3118, 2001.

    Google Scholar 

  49. R. Lyon. All pole models of auditory filtering. In E. Lewis, G. Long, R. Lyon, P. Narins, C. Steele, and E. Hecht-Poinar, editors, Diversity in Auditory Mechanics: Proc. Intl. Symp., University of California, Berkeley. World Scientific Publishing, 1996.

    Google Scholar 

  50. R. Lyon, A. Katsiamis, and E. Drakakis. History and future of auditory filter models. In Proc. 2010 IEEE Intl. Symp. Circuits and Systems, ISCAS, pages 3809–3812, 2010.

    Google Scholar 

  51. P. Majdak, P. Balazs, and B. Laback. Multiple exponential sweep method for fast measurement of head-related transfer functions. J Audio Eng Soc, 55:623–637, 2007.

    Google Scholar 

  52. P. Majdak, B. Masiero, and J. Fels. Sound localization in individualized and non-individualized crosstalk cancellation systems. J Acoust Soc Am, 133:2055–2068, 2013.

    Google Scholar 

  53. P. Majdak, T. Necciari, B. Baumgartner, and B. Laback. Modeling sound-localization performance in vertical planes: level dependence. In Poster at the 16th International Symposium on Hearing (ISH), Cambridge, UK, 2012.

    Google Scholar 

  54. T. May, S. van de Par, and A. Kohlrausch. Binaural localization and detection of speakers in complex acoustic scenes. In J. Blauert, editor, The technology of binaural listening, chapter 15. Springer, Berlin-Heidelberg-New York NY, 2013.

    Google Scholar 

  55. D. McAlpine and B. Grothe. Sound localization and delay lines-do mammals fit the model? Trends in Neurosciences, 26:347–350, 2003.

    Google Scholar 

  56. R. Meddis, M. J. Hewitt, and T. M. Shackleton. Implementation details of a computation model of the inner hair-cell auditory-nerve synapse. J Acoust Soc Am, 87:1813–1816, 1990.

    Google Scholar 

  57. R. Meddis, L. O’Mard, and E. Lopez-Poveda. A computational algorithm for computing nonlinear auditory frequency selectivity. J Acoust Soc Am, 109:2852–2861, 2001.

    Google Scholar 

  58. B. Moore and B. Glasberg. Suggested formulae for calculating auditory-filter bandwidths and excitation patterns. J Acoust Soc Am, 74:750–753, 1983.

    Google Scholar 

  59. S. Neely, S. Norton, M. Gorga, and J. W. Latency of auditory brain-stem responses and otoacoustic emissions using tone-burst stimuli. J Acoust Soc Am, 83:652–656, 1988.

    Google Scholar 

  60. P. O’Mard. Development system for auditory modelling. Technical report, Centre for the Neural Basis of Hearing, University of Essex, UK, 2004.

    Google Scholar 

  61. M. Park, P. A. Nelson, and K. Kang. A model of sound localisation applied to the evaluation of systems for stereophony. Acta Acustica/Acust., 94:825–839, 2008.

    Google Scholar 

  62. R. Patterson, I. Nimmo-Smith, J. Holdsworth, and P. Rice. An efficient auditory filterbank based on the gammatone function. APU report, 2341, 1988.

    Google Scholar 

  63. R. D. Patterson, M. H. Allerhand, and C. Giguère. Time-domain modeling of peripheral auditory processing: A modular architecture and a software platform. J Acoust Soc Am, 98:1890–1894, 1995.

    Google Scholar 

  64. D. Pralong and S. Carlile. The role of individualized headphone calibration for the generation of high fidelity virtual auditory space. J Acoust Soc Am, 100:3785–3793, 1996.

    Google Scholar 

  65. V. Pulkki and T. Hirvonen. Functional count-comparison model for binaural decoding. Acta Acustica/Acust., 95:883–900, 2009.

    Google Scholar 

  66. D. Püschel. Prinzipien der zeitlichen Analyse beim Hören. PhD thesis, Universität Göttingen, 1988.

    Google Scholar 

  67. A. Recio and W. Rhode. Basilar membrane responses to broadband stimuli. J Acoust Soc Am, 108:2281–2298, 2000.

    Google Scholar 

  68. F. Rønne, J. Harte, C. Elberling, and T. Dau. Modeling auditory evoked brainstem responses to transient stimuli. J Acoust Soc Am, 131:3903–3913, 2012.

    Google Scholar 

  69. M. Schroeder. Die statistischen Parameter der Frequenzkurven von grossen Räumen. Acustica, 4:594–600, 1954.

    Google Scholar 

  70. C. Shera. Intensity-invariance of fine time structure in basilar-membrane click responses: Implications for cochlear mechanics. J Acoust Soc Am, 110:332–348, 2001.

    Google Scholar 

  71. M. Slaney. Auditory toolbox, 1994.

    Google Scholar 

  72. P. L. Søndergaard, B. Torrésani, and P. Balazs. The Linear Time Frequency Analysis Toolbox. Int J Wavelets Multi, 10:1250032 [27 pages], 2012.

    Google Scholar 

  73. C. Spille, B. Meyer, M. Dietz, and V. Hohmann. Binaural scene analysis with multi-dimensional statistical filters. In J. Blauert, editor, The technology of binaural listening, chapter 6. Springer, Berlin-Heidelberg-New York NY, 2013.

    Google Scholar 

  74. S. Stevens, J. Volkmann, and E. Newman. A scale for the measurement of the psychological magnitude pitch. J Acoust Soc Am, 8:185–190, 1937.

    Google Scholar 

  75. M. Takanen, O. Santala, and V. Pulkki. Binaural assessment of parametrically coded spatial audio signals. In J. Blauert, editor, The technology of binaural listening, chapter 13. Springer, Berlin-Heidelberg-New York NY, 2013.

    Google Scholar 

  76. P. Vandewalle, J. Kovacevic, and M. Vetterli. Reproducible research in signal processing - what, why, and how. IEEE Signal Proc Mag, 26:37–47, 2009.

    Google Scholar 

  77. G. von Békésy. Zur theorie des hörens; Über das Richtungshören bei einer Zeitdefferenz oder Lautstärkenungleichheit der beiderseitigen Schalleinwirkungen. Phys Z, 31:824–835, 1930.

    Google Scholar 

  78. P. Ziegelwanger, H Majdak. Continuous-direction model of the time-of-arrival in the head-related transfer functions.J Acoust Soc Am, submitted.

    Google Scholar 

  79. M. S. A. Zilany and I. C. Bruce. Representation of the vowel \(/\epsilon /\) in normal and impaired auditory nerve fibers: Model predictions of responses in cats. J Acoust Soc Am, 122:402–248, 2007.

    Google Scholar 

  80. G. Zweig. Finding the impedance of the organ of corti. J Acoust Soc Am, 89:1229–1254, 1991.

    Google Scholar 

  81. E. Zwicker. Subdivision of the audible frequency range into critical bands (frequenzgruppen). J Acoust Soc Am, 33:248–248, 1961.

    Google Scholar 

  82. E. Zwicker and H. Fastl. Psychoacoustics: Facts and models. Springer Berlin, 1999.

    Google Scholar 

Download references

Acknowledgments

The authors thank J. Blauert for organizing the AabbA project and all the developers of the models for providing information on the models. They are also indepted B. Laback and two anonymous reviewers for their useful comments on earlier versions of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Majdak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Søndergaard, P.L., Majdak, P. (2013). The Auditory Modeling Toolbox. In: Blauert, J. (eds) The Technology of Binaural Listening. Modern Acoustics and Signal Processing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37762-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37762-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37761-7

  • Online ISBN: 978-3-642-37762-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics