Skip to main content

Modeling Sound Localization with Cochlear Implants

  • Chapter
Book cover The Technology of Binaural Listening

Part of the book series: Modern Acoustics and Signal Processing ((MASP))

Abstract

This chapter describes a model framework for evaluating the precision of as to which interaural time differences, ITD, are represented in the left- and right-ear auditory-nerve responses. This approach is very versatile, as it allows not only for the evaluation of spiking neuronal responses from models of intact inner ears but also of responses of the deaf ears of cochlear implantees. The model framework delivers quantitative data and, therefore, enables comparisons between different cochlear-implant coding strategies. As the model of electric excitation of the auditory nerve also includes effects such as channel crosstalk, neuronal adaptation and mismatch of electrode positions between left and right ears, its predictive power is much higher than an analysis of the electrical impulses delivered to the electrodes. Evaluation of a novel fine-structure-coding strategy as used by a major implant manufacturer, revealed that, in a best case scenario, sophisticated strategies should be able to provide ITD cues with sufficient precision for sound localization. However, whether these cues can actually be exploited by cochlear implant users has yet to be determined by listening tests. Nevertheless, the model framework introduced here is a valuable tool for the development and pre-evaluation of bilateral cochlear implant coding strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This concept is realized in the MAESTRO cochlear implant system by MED-EL in the lowest-frequency channels, which stimulate the most apical electrodes.

  2. 2.

    Data not shown.

References

  1. P. J. Basser. Cable equation for a myelinated axon derived from its microstructure. Med. Biol. Eng. Comput., 31 Suppl:S87–S92, 1993.

    Google Scholar 

  2. P. Blamey. Are spiral ganglion cell numbers important for speech perception with a cochlear implant? Am. J. Otol., 18:S11–S12, 1997.

    Google Scholar 

  3. J. Blauert. Spatial hearing: The psychophysics of human sound localization. 2nd, revised ed. MIT Press, Berlin-Heidelberg-New York NY, 1997.

    Google Scholar 

  4. J. Breebaart, S. van de Par, and A. Kohlrausch. Binaural processing model based on contralateral inhibition. I. model structure. J. Acoust. Soc. Am., 110:1074–1088, 2001.

    Google Scholar 

  5. J. Breebaart, S. van de Par, and A. Kohlrausch. Binaural processing model based on contralateral inhibition. II. dependence on spectral parameters. J. Acoust. Soc. Am., 110:1089–1104, 2001.

    Google Scholar 

  6. J. Breebaart, S. van de Par, and A. Kohlrausch. Binaural processing model based on contralateral inhibition. III. dependence on temporal parameters. J. Acoust. Soc. Am., 110:1105–1117, 2001.

    Google Scholar 

  7. J. J. Briaire and J. H. Frijns. Field patterns in a 3d tapered spiral model of the electrically stimulated cochlea. Hear. Res., 148:18–30, 2000.

    Google Scholar 

  8. I. C. Bruce, M. W. White, L. S. Irlicht, S. J. O’Leary, and G. M. Clark. The effects of stochastic neural activity in a model predicting intensity perception with cochlear implants: low-rate stimulation. IEEE Trans. Biomed. Engr. 46(12):1393–1404, 1999.

    Google Scholar 

  9. I. C. Bruce, M. W. White, L. S. Irlicht, S. J. O’Leary, S. Dynes, E. Javel, G. M. Clark. A stochastic model of the electrically stimulated auditory nerve: single-pulse, response. IEEE Trans. Biomed. Engr. 46:617–629, 1999.

    Google Scholar 

  10. J. Certaine. The solution of ordinary differential equations with large time constants. Mathematical methods for digital computers, pages 128–132, 1960.

    Google Scholar 

  11. C. Cherry and B. M. Sayers. Experiments upon the total inhibition of stammering by external control, and some clinical results. J. Psychosom. Res., 1:233–246, 1956.

    Google Scholar 

  12. G. Clark. Cochlear implants: Fundamentals and applications. New York: Springer, 2003.

    Google Scholar 

  13. H. S. Colburn. Theory of binaural interaction based on auditory-nerve data. I. general strategy and preliminary results on interaural discrimination. J. Acoust. Soc. Am., 54:1458–1470, 1973.

    Google Scholar 

  14. H. S. Colburn. Theory of binaural interaction based on auditory-nerve data. II. detection of tones in noise. J. Acoust. Soc. Am., 61:525–533, 1977.

    Google Scholar 

  15. H. S. Colburn and J. S. Latimer. Theory of binaural interaction based on auditory-nerve data. III. joint dependence on interaural time and amplitude differences in discrimination and detection. J. Acoust. Soc. Am., 64:95–106, 1978.

    Google Scholar 

  16. R. Cole, Y. Muthusamy, and M. Fanty. The isolet spoken letter database, 1990.

    Google Scholar 

  17. J. Colombo and C. W. Parkins. A model of electrical excitation of the mammalian auditory-nerve neuron. Hear. Res., 31:287–311, 1987.

    Google Scholar 

  18. M. Dorman, K. Dankowski, G. McCandless, and L. Smith. Consonant recognition as a function of the number of channels of stimulation by patients who use the symbion cochlear implant. Ear Hear., 10:288–291, 1989.

    Google Scholar 

  19. N. I. Durlach. Equalization and cancellation theory of binaural masking-level differences. J. Acoust. Soc. Am., 35:1206–1218, 1963.

    Google Scholar 

  20. S. B. C. Dynes. Discharge characteristics of auditory nerve fibers for pulsatile electrical stimuli. PhD thesis, Massachusetts Institute of Technology, 1996.

    Google Scholar 

  21. E. Erixon, H. Högstorp, K. Wadin, and H. Rask-Andersen. Variational anatomy of the human cochlea: implications for cochlear implantation. Otol. Neurotol., 30:14–22, 2009.

    Google Scholar 

  22. E. Felder and A. Schrott-Fischer. Quantitative evaluation of myelinated nerve fibres and hair cells in cochleae of humans with age-related high-tone hearing loss. Hear. Res., 91:19–32, 1995.

    Google Scholar 

  23. S. Fredelake and V. Hohmann. Factors affecting predicted speech intelligibility with cochlear implants in an auditory model for electrical stimulation. Hear. Res., 2012.

    Google Scholar 

  24. L. M. Friesen, R. V. Shannon, D. Baskent, and X. Wang. Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants. J. Acoust. Soc. Am., 110:1150–1163, 2001.

    Google Scholar 

  25. J. H. Frijns, J. J. Briaire, and J. J. Grote. The importance of human cochlear anatomy for the results of modiolus-hugging multichannel cochlear implants. Otol. Neurotol., 22:340–349, 2001.

    Google Scholar 

  26. J. H. Frijns, S. L. de Snoo, and R. Schoonhoven. Potential distributions and neural excitation patterns in a rotationally symmetric model of the electrically stimulated cochlea. Hear. Res., 87:170–186, 1995.

    Google Scholar 

  27. J. H. Frijns, S. L. de Snoo, and J. H. ten Kate. Spatial selectivity in a rotationally symmetric model of the electrically stimulated cochlea. Hear. Res., 95:33–48, 1996.

    Google Scholar 

  28. Q.-J. Fu. Loudness growth in cochlear implants: effect of stimulation rate and electrode configuration. Hear. Res., 202:55–62, 2005.

    Google Scholar 

  29. W. Gerstner and W. M. Kistler. Spiking neuron models. Cambridge University Press, 2002

    Google Scholar 

  30. J. H. Goldwyn, S. M. Bierer, and J. A. Bierer. Modeling the electrode-neuron interface of cochlear implants: effects of neural survival, electrode placement, and the partial tripolar configuration. Hear. Res., 268:93–104, 2010.

    Google Scholar 

  31. B. Grothe, M. Pecka, and D. McAlpine. Mechanisms of sound localization in mammals. Physiol. Rev., 90:983–1012, 2010.

    Google Scholar 

  32. V. Hamacher. Signalverarbeitungsmodelle des elektrisch stimulierten Gehörs - Signal-processing models of the electrically-stimulated auditory system. PhD thesis, IND, RWTH Aachen, 2004.

    Google Scholar 

  33. R. Hartmann and R. Klinke. Impulse patterns of auditory nerve fibres to extra- and intracochlear electrical stimulation. Acta Otolaryngol Suppl, 469:128–134, 1990.

    Google Scholar 

  34. I. Hochmair, P. Nopp, C. Jolly, M. Schmidt, H. Schösser, C. Garnham, and I. Anderson. MED-EL cochlear implants: state of the art and a glimpse into the future. Trends Amplif, 10:201–219, 2006.

    Google Scholar 

  35. I. J. Hochmair-Desoyer, E. S. Hochmair, H. Motz, and F. Rattay. A model for the electrostimulation of the nervus acusticus. Neuroscience, 13:553–562, 1984.

    Google Scholar 

  36. A. E. Holmes, F. J. Kemker, and G. E. Merwin. The effects of varying the number of cochlear implant electrodes on speech perception. American Journal of Otology, 8:240–246, 1987.

    Google Scholar 

  37. N. S. Imennov and J. T. Rubinstein. Stochastic population model for electrical stimulation of the auditory nerve. IEEE Trans Biomed Eng. 56:2493–2501, 2009.

    Google Scholar 

  38. L. A. Jeffress. A place theory of sound localization. J. Comp. Physiol. Psychol., 41:35–39, 1948.

    Google Scholar 

  39. S. Kerber and B. U. Seeber. Sound localization in noise by normal-hearing listeners and cochlear implant users. Ear Hear., 33:445–457, 2012.

    Google Scholar 

  40. A. M. Khan, O. Handzel, B. J. Burgess, D. Damian, D. K. Eddington, and J. B. Nadol, Jr. Is word recognition correlated with the number of surviving spiral ganglion cells and electrode insertion depth in human subjects with cochlear implants? Laryngoscope, 115:672–677, 2005.

    Google Scholar 

  41. N. Y.-S. Kiang. Discharge patterns of single fibers in the cat’s auditory nerve. Special technical report, 166, Massachusetts Institute of Technology, 1965.

    Google Scholar 

  42. W. E. Kock. Binaural localization and masking. J. Acoust. Soc. Am., 22:801, 1950.

    Google Scholar 

  43. A. Kohlrausch, J. Braasch, D. Kolossa, and J. Blauert. An introduction to binaural processing. In J. Blauert, editor, The technology of binaural listening, chapter 1. Springer, Berlin-Heidelberg-New York NY, 2013.

    Google Scholar 

  44. A. Kral, R. Hartmann, D. Mortazavi, and R. Klinke. Spatial resolution of cochlear implants: the electrical field and excitation of auditory afferents. Hear. Res., 121:11–28, 1998.

    Google Scholar 

  45. M. C. Liberman and M. E. Oliver. Morphometry of intracellularly labeled neurons of the auditory nerve: correlations with functional properties. J. Comp. Neurol., 223:163–176, 1984.

    Google Scholar 

  46. W. Lindemann. Extension of a binaural cross-correlation model by contralateral inhibition. I. simulation of lateralization for stationary signals. J. Acoust. Soc. Am., 80:1608–1622, 1986.

    Google Scholar 

  47. W. Lindemann. Extension of a binaural cross-correlation model by contralateral inhibition. II. the law of the first wave front. J. Acoust. Soc. Am., 80:1623–1630, 1986.

    Google Scholar 

  48. P. C. Loizou. Signal-processing techniques for cochlear implants. 18(3):34–46, 1999.

    Google Scholar 

  49. J. Malmivuo and R. Plonsey. Bioelectromagnetism: principles and applications of bioelectric and biomagnetic fields. Oxford University Press, USA, 1995.

    Google Scholar 

  50. H. J. McDermott. Music perception with cochlear implants: a review. Trends Amplif, 8:49–82, 2004.

    Google Scholar 

  51. D. R. McNeal. Analysis of a model for excitation of myelinated nerve. BME-23:329–337, 1976.

    Google Scholar 

  52. H. Mino, J. T. Rubinstein, C. A. Miller, and P. J. Abbas. Effects of electrode-to-fiber distance on temporal neural response with electrical stimulation. 51:13–20, 2004.

    Google Scholar 

  53. H. Mino, J. T. Rubinstein, and J. A. White. Comparison of algorithms for the simulation of action potentials with stochastic sodium channels. Ann. Biomed. Eng., 30:578–587, 2002.

    Google Scholar 

  54. H. Motz and F. Rattay. A study of the application of the hodgkin-huxley and the frankenhaeuser-huxley model for electrostimulation of the acoustic nerve. Neuroscience, 18:699–712, 1986.

    Google Scholar 

  55. H. Motz and F. Rattay. Signal processing strategies for electrostimulated ear prostheses based on simulated nerve response. Perception, 16:777–784, 1987.

    Google Scholar 

  56. M. H. Negm and I. C. Bruce. Effects of i(h) and i(klt) on the response of the auditory nerve to electrical stimulation in a stochastic hodgkin-huxley model. Conf Proc IEEE Eng Med Biol Soc, 2008:5539–5542, 2008.

    Google Scholar 

  57. D. A. Nelson, G. S. Donaldson, and H. Kreft. Forward-masked spatial tuning curves in cochlear implant users. J. Acoust. Soc. Am., 123:1522–1543, 2008.

    Google Scholar 

  58. M. Nicoletti, P. Bade, M. Rudnicki, and W. Hemmert. Coding of sound into neuronal spike trains in cochlear implant users. In 13th Ann. Meetg. German Soc. Audiol., (DGA), 2010

    Google Scholar 

  59. M. Nicoletti, M. Isik, and W. Hemmert. Model-based validation framework for coding strategies in cochlear implants. In Conference on Implantable Auditory Prostheses (CIAP), 2011.

    Google Scholar 

  60. NIH Publication No. 11–4798. Cochlear implants, March 2011.

    Google Scholar 

  61. P. Nopp, P. Schleich, and P. D’Haese. Sound localization in bilateral users of MED-EL combi 40/40+ cochlear implants. Ear Hear., 25:205–214, 2004.

    Google Scholar 

  62. S. J. O’Leary, R. C. Black, and G. M. Clark. Current distributions in the cat cochlea: a modelling and electrophysiological study. Hear. Res., 18:273–281, 1985.

    Google Scholar 

  63. C. W. Parkins and J. Colombo. Auditory-nerve single-neuron thresholds to electrical stimulation from scala tympani electrodes. Hear. Res., 31:267–285, 1987.

    Google Scholar 

  64. F. Rattay. Analysis of models for external stimulation of axons. 33:974–977, 1986.

    Google Scholar 

  65. F. Rattay. The basic mechanism for the electrical stimulation of the nervous system. Neuroscience, 89:335–346, 1999.

    Google Scholar 

  66. F. Rattay, R. N. Leao, and H. Felix. A model of the electrically excited human cochlear neuron. II. influence of the three-dimensional cochlear structure on neural excitability. Hear. Res., 153:64–79, 2001.

    Google Scholar 

  67. F. Rattay, P. Lutter, and H. Felix. A model of the electrically excited human cochlear neuron. I. contribution of neural substructures to the generation and propagation of spikes. Hear. Res., 153:43–63, 2001.

    Google Scholar 

  68. J. S. Rothman and P. B. Manis. The roles potassium currents play in regulating the electrical activity of ventral cochlear nucleus neurons. J. Neurophysiol., 89:3097–3113, 2003.

    Google Scholar 

  69. J. T. Rubinstein, B. S. Wilson, C. C. Finley, and P. J. Abbas. Pseudospontaneous activity: stochastic independence of auditory nerve fibers with electrical stimulation. Hear. Res., 127:108–118, 1999.

    Google Scholar 

  70. B. U. Seeber and H. Fastl. Localization cues with bilateral cochlear implants. J. Acoust. Soc. Am., 123:1030–1042, 2008.

    Google Scholar 

  71. R. V. Shannon. Multichannel electrical stimulation of the auditory nerve in man. II. Channel interaction. Hear. Res., 12:1–16, 1983.

    Google Scholar 

  72. R. K. Shepherd and E. Javel. Electrical stimulation of the auditory nerve. I. Correlation of physiological responses with cochlear status. Hear. Res., 108:112–144, 1997.

    Google Scholar 

  73. R. K. Shepherd and E. Javel. Electrical stimulation of the auditory nerve: II. Effect of stimulus waveshape on single fibre response properties. Hear. Res., 130:171–188, 1999.

    Google Scholar 

  74. J. E. Smit, T. Hanekom, A. van Wieringen, J. Wouters, and J. J. Hanekom. Threshold predictions of different pulse shapes using a human auditory nerve fibre model containing persistent sodium and slow potassium currents. Hear. Res., 269:12–22, 2010.

    Google Scholar 

  75. H. Spoendlin and A. Schrott. The spiral ganglion and the innervation of the human organ of corti. Acta Otolaryngol. (Stockh.), 105:403–410, 1988.

    Google Scholar 

  76. R. Stern, Jr and H. S. Colburn. Theory of binaural interaction based in auditory-nerve data. IV. A model for subjective lateral position. J. Acoust. Soc. Am., 64:127–140, 1978.

    Google Scholar 

  77. R. M. Stern and C. Trahiotis. Models of binaural interaction. In B. C. J. Moore, editor, Hearing, Handbook of perception and cognition, chapter 10, pages 347–387. Academic Press, second edition, 1995.

    Google Scholar 

  78. B. Stöbich, C. M. Zierhofer, and E. S. Hochmair. Influence of automatic gain control parameter settings on speech understanding of cochlear implant users employing the continuous interleaved sampling strategy. Ear Hear., 20:104–116, 1999.

    Google Scholar 

  79. I. Tasaki. New measurements of the capacity and the resistance of the myelin sheath and the nodal membrane of the isolated frog nerve fiber. Am. J. Physiol., 181:639–650, 1955.

    Google Scholar 

  80. R. van Hoesel, M. Böhm, J. Pesch, A. Vandali, R. D. Battmer, and T. Lenarz. Binaural speech unmasking and localization in noise with bilateral cochlear implants using envelope and fine-timing based strategies. J. Acoust. Soc. Am., 123:2249–2263, 2008.

    Google Scholar 

  81. B. N. W. Schwartz and R. Stämpli. Longitudinal resistance of axoplasm in myelinated nerve fibers of the frog. Pflügers Archiv European Journal of Physiology, 379:R41, 1979.

    Google Scholar 

  82. H. Wang. Speech coding and information processing in the peripheral human auditory system. PhD thesis, Technische Universität München, 2009.

    Google Scholar 

  83. D. Whiten. Electro-anatomical models of the cochlear implant. PhD thesis, Massachusetts Institute of Technology, 2007.

    Google Scholar 

  84. B. S. Wilson, C. C. Finley, D. T. Lawson, R. D. Wolford, D. K. Eddington, and W. M. Rabinowitz. Better speech recognition with cochlear implants. Nature, 352:236–238, 1991.

    Google Scholar 

  85. J. Woo, C. A. Miller, and P. J. Abbas. The dependence of auditory nerve rate adaptation on electric stimulus parameters, electrode position, and fiber diameter: a computer model study. J. Assoc. Res. Otolaryngol., 11:283–296, 2010.

    Google Scholar 

  86. F.-G. Zeng, G. Grant, J. Niparko, J. Galvin, R. Shannon, J. Opie, and P. Segel. Speech dynamic range and its effect on cochlear implant performance. J. Acoust. Soc. Am., 111:377–386, 2002.

    Google Scholar 

  87. F.-G. Zeng, S. Rebscher, W. Harrison, X. Sun, and H. Feng. Cochlear implants: System design, integration, and, evaluation. 1:115–142, 2008.

    Google Scholar 

  88. C. Zierhofer. Electrical nerve stimulation based on channel-specific sequences. European Patent, Office, WO/2001/013991, 2001.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the German Federal Ministry of Education and Research within the Munich Bernstein Center of Computational Neuroscience, ref.# 01GQ1004B and 01GQ1004D, and MED-EL Innsbruck. The authors thank V. Hohmann, F.-M. Hoffmann, P. Nopp, J. Blauert and two anonymous reviewers for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Hemmert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nicoletti, M., Wirtz, C., Hemmert, W. (2013). Modeling Sound Localization with Cochlear Implants. In: Blauert, J. (eds) The Technology of Binaural Listening. Modern Acoustics and Signal Processing. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37762-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37762-4_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37761-7

  • Online ISBN: 978-3-642-37762-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics