Skip to main content

A Method for Mapping Monthly Solar Irradiation Over Complex Areas of Topography: Réunion Island’s Case Study

  • Conference paper
  • First Online:
Climate-Smart Technologies

Abstract

The aim of this study is to build a high-resolution mapping model for Réunion, a mountainous island with highly complex terrain. The dataset used here, which consists of solar irradiation, is not available from the regular weather station network over the island. This network is relatively dense and includes quality-monitoring stations, thus providing enough information to tackle the problem of climate data interpolation over the complex terrain. A model for mapping the monthly means of such variables is presented. It combines Partial Least Squares (PLS) regression with kriging interpolation of residuals. For all the variables, the same set of nine predictors, including altitude, geographical and topographical features, was selected for PLS regression. The regression model gives statistically good estimates of monthly solar irradiation. Accuracy improves significantly using solar radiation mapping built with regression+kriging than for mapping built with regression only.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdi H (2010) Partial least square regression, projection on latent structure regression, PLS-Regression. Comput Stat, Wiley Inter Rev 2:97–106

    Google Scholar 

  • Alsamamra H, Ruiz-Arias JA, Pozo-Vasquez D, Tovar-Pescador J (2009) A comparative study of ordinary and residual kriging techniques for mapping solar irradiation over Spain. Agric For Meteorol 149:1343–1357

    Article  Google Scholar 

  • Brunetti M, Lentini G, Maugeri M, Nanni T, Simolo C, Spinoni J (2009) 1961–1990 high-resolution northern and central Italy monthly precipitation climatologies. Adv Sci Res 3:73–78

    Article  Google Scholar 

  • Chen D, Gong L, Xu C, Halldin S (2007) A high-resolution, gridded dataset for monthly temperature normals (1971–2000) in Sweden. Geogr Ann 89(4):249–261

    Article  Google Scholar 

  • D’ambra A, Sarnacchiaro P (2010) Some data reduction methods to analyze the dependence with highly collinear variables: a simulation study. Asian J Math Stat 3(2):69–81

    Article  Google Scholar 

  • Daly C, Smith JW, Smith JI, McKane RB (2007) High-resolution spatial modeling of daily weather elements for a catchment in the Oregon mountains, United States. J Appl Meteorol Climatol 46:1565–1586

    Article  Google Scholar 

  • Douville H (1992) Utilisation d’un modèle numérique de terrain pour le calcul de champs pluviométriques en zone montagneuse. Application de la méthode à l’île de La Réunion.Bureau d’étude climatologique, Direction Interrégionale de La Réunion. Technical report, p 151

    Google Scholar 

  • Efthymiadis D, Jones PD, Briffa KR, Auer I, Böhm R, Schôner W, Rei C, Schmidli J (2006) Construction of a 10-min-gridded precipitation data set for the greater Alpine region for 1800–2003. J Geophys Res 111(D1). doi:10.1029/2005JD006120

  • Goodale CL, Aber JD, Ollinger SV (1998) Mapping monthly precipitation, temperature, and solar irradiation for Ireland with polynomial regression and digital elevation model. Clim Res 10:35–49

    Article  Google Scholar 

  • Goyal MK, Ojha CSP (2010) Application of PLS-regression as downscaling tool for Pichola lake basin in India. Int J Geosci 1:54–57

    Google Scholar 

  • Guan H, Wilson JL, Makhnin O (2005) Geostatistical mapping of mountain precipitation incorporating autosearched effects of terrain and climatic characteristics. J Hydrometeorology 6:1018–1031

    Article  Google Scholar 

  • Gyalistras D (2003) Development and validation of a high-resolution monthly gridded temperature and precipitation data set for Switzerland (1951–2000). Clim Res 25:55–83

    Google Scholar 

  • Hirabayasi Y, Kanae S, Motota K, Masuda K, Döll P (2008) A 59-year (1948–2006) global near-surface meteorological data set for land surface models. Part I: development of daily forcing and assessment of precipitation intensity. Hydrol Res Lett 2:36–40

    Article  Google Scholar 

  • Höskuldsson A (1988) PLS regression methods. J Chemometr 2(3): 211–228

    Google Scholar 

  • Hunter RD, Meentemeyer RK (2005) Climatologically aided mapping of daily precipitation and temperature. J Appl Meteorol 44:1501–1510

    Article  Google Scholar 

  • Issaks E, Srivastava R (1989) An introduction to applied geostatistics. Oxford University press, New York, p 561

    Google Scholar 

  • Kyriakidis PC, Kim J, Miller NL (2001) Geostatistical mapping of precipitation from rain gauge data using atmospheric terrain characteristic. J Appl Meteorol 40:1855–1877

    Article  Google Scholar 

  • Matheron G (1971) The theory of regionalized variables and its applications. Technical reports 6, Paris school of mines. Cah. Cent. Morphol. Math., Fontainebleau

    Google Scholar 

  • McCune B, Keon D (2002) Equations for potential annual direct incident radiation and heat load. J Veg Sci 13:603–606

    Article  Google Scholar 

  • McKenney DW, Pedlar JH, Papadopol P, Hutchinson MF (2006) The development of 1901–2000 historical monthly climate models for Canada and the United States. Agric For Meteorol 138:69–81

    Article  Google Scholar 

  • Météo-France, Atlas climatique de La Réunion (2000) Bureau d’étude climatologique, Direction Interrégionale de La Réunion. Annual report, No. 1657

    Google Scholar 

  • Mitchell TD, Jones P (2005) An improved method of constructing database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693–712

    Article  Google Scholar 

  • Pape R, Wundram D, Löffler J (2009) Modelling near-surface temperature conditions in high mountain environments: an appraisal. Clim Res 39:99–109

    Article  Google Scholar 

  • Portalés C, Boronat N, Pardo-Pascual JE, Balaguer-Beser A (2009) Seasonal precipitation interpolation at the Valencia region with multivariate methods using geographic and topographic information. Int J Climatol 30(10):1547–1563

    Google Scholar 

  • Tan B, Suo L, Huang J (2008) Variability of the coupling between surface air temperature and the northern annular mode at various levels. Acta Meteorol Sinica 22:277–283

    Google Scholar 

  • Taupin FG, Bessafi M, Baldy S, Bremaud PJ (1999) Tropospheric ozone above the southwestern Indian ocean is strongly linked to dynamical conditions prevailing in the tropics. J Geophy Res 104:8057–8066

    Article  Google Scholar 

  • Tootle AG, Singh AK, Piechota TC, Farnham I (2007) Long lead-time forecasting of U.S. streamflow using partial least squares regression. J Hydrol Eng 12(5):442–451

    Article  Google Scholar 

  • Ward MN, Folland CK (1991) Prediction of seasonal rainfall in the north Nordeste of Brazil using eigenvectors of sea-surface temperature. Int J Climatol 11:711–743

    Article  Google Scholar 

  • Wold H (1966) Estimation of principal components and related models by iterative least squares. In: Krishnaiah PR (ed) Multivariate analysis. New York Academic Press, New York, pp 391–420

    Google Scholar 

  • Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of Chemometrics. Chemometr Intell Lab Syst 58:109–130

    Google Scholar 

  • Yeniay Ö, Göktas A (2002) A comparison of partial least squares regression with other prediction methods. J Math Stat 31:99–111

    Google Scholar 

  • Zeng X, Brunke MA, Fairall M, Bond NA, Lenschow DH (2004) Marine atmospheric boundary layer height over the eastern Pacific: Data analysis and model evaluation. J Clim 17:4159–4170

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miloud Bessafi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bessafi, M., Morel, B., Lan-Sun-Luk, JD., Chabriat, JP., Jeanty, P. (2013). A Method for Mapping Monthly Solar Irradiation Over Complex Areas of Topography: Réunion Island’s Case Study. In: Leal Filho, W., Mannke, F., Mohee, R., Schulte, V., Surroop, D. (eds) Climate-Smart Technologies. Climate Change Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37753-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37753-2_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37752-5

  • Online ISBN: 978-3-642-37753-2

  • eBook Packages: Business and EconomicsEconomics and Finance (R0)

Publish with us

Policies and ethics