Skip to main content

Lagerstätten durch Sedimentation und Verwitterung

  • Chapter
Die Welt der Rohstoffe
  • 5743 Accesses

Zusammenfassung

Auch Verwitterung, Transport und Sedimentation sind Prozesse, bei denen es zu einer effektiven Fraktionierung kommt. Kein Wunder, dass in Sedimenten wichtige Metalllagerstätten vorkommen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 37.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Al-Farraj A (2005) An evolutionary model for sabkha development on the north coast of the UAE. J Arid Environ 63:740–755

    Google Scholar 

  • Aleva GJJ, 1994. Laterites: concepts, geology, morphology and chemistry. International Soil Reference and Information Centre (ISRIC).

    Google Scholar 

  • Allen PA, Etienne JL (2008) Sedimentary challenge to Snowball Earth. Nat Geosci 1:817–825

    Google Scholar 

  • Anonymus, 1908. The Welcome Stranger – biggest nugget known. NZ Truth, S. 8.

    Google Scholar 

  • Anonymus, 2010. Barnett to open Boddington Gold Mine – ABC News (Australian Broadcasting Corporation), http://www.abc.net.au/news/2010-02-03/barnett-to-open-boddington-goldmine/320538 (accessed 4.2.13).

    Google Scholar 

  • Anonymus, 2011. Nachnutzungskonzept Pumpspeicherkraftwerk. Gesteins-Perspektiven 2–4.

    Google Scholar 

  • Anonymus, 2012. Boddington Gold Mine (BGM), Western Australia (WA) – Mining Technology. http://www.mining-technology.com/projects/boddington (accessed 4.2.13).

  • Atkinson H, Hale M, 1993. Phosphate production in central and southern Africa, 1900–1992. Minerals Industry International, September, 22–30.

    Google Scholar 

  • Bao Z, Zhao Z (2008) Geochemistry of mineralization with exchangeable REY in the weathering crusts of granitic rocks in South China. Ore Geol Rev 33:519–535

    Google Scholar 

  • Barbara RGmbH, 1991. Grube Wohlverwahrt-Nammen.

    Google Scholar 

  • Bárdossy G, 1982. Karst bauxites. Bauxite deposits on carbonate rock. Elsevier.

    Google Scholar 

  • Barifaijo E, 2001. The petrology of the volcanic rocks of Uganda, in: GSU Newsletter, 1. Presented at the regional conference on basement geology, groundwater, mineral resources, and mining related environmental problems in Eastern Africa. Geological Society of Uganda, Kampala, Uganda, 58–59.

    Google Scholar 

  • Baturin GN, 2000. Phosphorites on the Sea Floor: Origin, Composition and Distribution. New York.

    Google Scholar 

  • Bechtel A, Shieh Y-N, Elliott WC, Oszczepalski S, Hoernes S (2000) Mineralogy, crystallinity and stable isotopic composition of illitic clays within the Polish Zechstein basin: implications for the genesis of Kupferschiefer mineralization. Chem Geol 163:189–205

    Google Scholar 

  • Bechtel A, Gratzer R, Püttmann W, Oszczepalski S (2001a) Variable alteration of organic matter in relation to metal zoning at the Rote Fäule front (Lubin-Sieroszowice mining district, SW Poland). Org Geochem 32:377–395

    Google Scholar 

  • Bechtel A, Sun Y, Püttmann W, Hoernes S, Hoefs J (2001b) Isotopic evidence for multi-stage base metal enrichment in the Kupferschiefer from the Sangerhausen Basin, Germany. Chem Geol 176:31–49

    Google Scholar 

  • Bechtel A, Gratzer R, Püttmann W, Oszczepalski S (2002) Geochemical characteristics across the oxic/anoxic interface (Rote Fäule front) within the Kupferschiefer of the Lub in-Sieroszowice mining district (SW Poland). Chem Geol 185:9–31

    Google Scholar 

  • Bekker A, Slack JF, Planavsky N, Krapez B, Hofmann A, K. O. Konhauser und O. J. Rouxel, 2010. Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Economic Geology 105, 467–508.

    Google Scholar 

  • Bell K, Blenkinsop J, J (1987) Nd and Sr isotopic compositions of East African carbonatites: Implications for mantle heterogeneity. Geology 15:99–102

    Google Scholar 

  • Belykh VI, Dunai EI, Lugovaya IP (2007) Physicochemical formation conditions of banded iron formations and highgrade iron ores in the region of the Kursk Magnetic Anomaly: Evidence from isotopic data. Geol Ore Deposits 49:177–159

    Google Scholar 

  • Beukes NJ, Dorland H, Gutzmer J, Nedachi M, Ohmoto H (2002) Tropical laterites, life on land, and the history of atmospheric oxygen in the Paleoproterozoic. Geology 30:491–494

    Google Scholar 

  • BGR, o.D. Erkundungsstandort Gorleben. http://www.bgr.bund.de/DE/Themen/Endlagerung/Endlagerstandorte/Gorleben/gorleben_node.html (Abgerufen Mai 2013).

  • Bluhm H, 2001. Re-establishment of an abyssal megabenthic community after experimental physical disturbance of the seafloor. Deep Sea Research Part II: Topical Studies in Oceanography 48, 3841–3868.

    Google Scholar 

  • Borowski C (2001) Physically disturbed deep-sea macrofauna in the Peru Basin, southeast Pacific, revisited 7 years after the experimental impact. Deep Sea Research Part II: Topical Studies in. Oceanography 48:3809–3839

    Google Scholar 

  • Bowell RJ, Foster RP, Gize AP (1993) The mobility of gold in tropical rain forest soils. Econ Geol 88:999–1016

    Google Scholar 

  • Brocks JJ, Logan GA, Buick R, Summons RE (1999) Archean molecular fossils and the early rise of eukaryotes. Science 285:1033–1036

    Google Scholar 

  • Buick R (2008) When did oxygenic photosynthesis evolve? Philosophical Transactions of the Royal Society B: Biological Sciences 363:2731–2743

    Google Scholar 

  • Butler GP (1969) Modern evaporite deposition and geochemistry of coexisting brines, the sabkha, Trucial Coast, Arabian Gulf. J Petrol 39:70–89

    Google Scholar 

  • Button A, Cook P, 1982. Sedimentary iron deposits, evaporites and phosphorites – state of the art report, in: Mineral deposits and the evolution of the biosphere; report of the Dahlem Workshop on Biospheric Evolution and Precambrian Metallogeny. Springer, New York, pp 259–273.

    Google Scholar 

  • Byerly GR, Lower DR, Walsh MM (1986) Stromatolites from the 3,300–3,500-Myr Swaziland Supergroup, Barberton Mountain Land, South Africa. Nature 319:489–491

    Google Scholar 

  • Cabral AR, Radtke M, Munnik F, Lehmann B, Reinholz U, Riesemeier H, Tupinamba M, Kwitko-Ribeiro R (2011) Iodine in alluvial platinum-palladium nuggets: Evidence for biogenic precious-metal fixation. Chem Geol 281:125–132

    Google Scholar 

  • Cailteux JLH, Kampunzu AB, Lerouge C, Kaputo AK, Milesi JP (2005) Genesis of sediment-hosted stratiform copper-cobalt deposits, central African Copperbelt. J Afr Earth Sci 42:134–158

    Google Scholar 

  • Carlisle D (1983) Concentration of uranium and vanadium in calcretes and gypcretes. Geological Society, London. Special Publications 11:185–195

    Google Scholar 

  • Chowdhury MR, Venkatesh V, Anandalwar MA, Paul DK, 1965. Recent concepts on the origin of Indian laterite. Memoirs of the Geological Survey of India A 31.

    Google Scholar 

  • Colin F, Lecomte P, Boulange B (1989) Dissolution features of gold particles in a lateritic profile at Dondo Mobi, Gabon. Geoderma 45:241–250

    Google Scholar 

  • Crerar DA, Barnes H (1974) Deposition of deep-sea manganese nodules. Geochim Cosmochim Acta 38:279–300

    Google Scholar 

  • Cronan DS (2000) Handbook of marine mineral deposits, Marine science series. CRC, Boca Raton, FL

    Google Scholar 

  • Dahanayake K, Krumbein W, 1986. Microbial structures in oolitic iron formations. Mineralium Deposita 21.

    Google Scholar 

  • Dalvi AD, Bacon WG, Osborne RC, 2004. The past and the future of nickel laterites, in: PDAC 2004 International Convention, Trade Show & Investors Exchange. Toronto: The prospectors and Developers Association of Canada, 7–10.

    Google Scholar 

  • Dambeck H, 2012. Osmosekraftwerk: Grüner Strom aus süßem Wasser – Spiegel Online. http://www.spiegel.de/wissenschaft/technik/osmosekraftwerke-liefern-oekostrom-aus-salzwasserund-suesswasser-a-823820.html (accessed 3.13.13).

  • Davies KA (1947) The phosphate deposits of the Eastern Province, Uganda. Econ Geol 42:137–146

    Google Scholar 

  • Decrée S, Deloule E, De Putter T, Dewaele S, Mees F, Yans J, Marignac C (2011) SIMS U–Pb dating of uranium mineralization in the Katanga Copperbelt: Constraints for the geodynamic context. Ore Geol Rev 40:81–89

    Google Scholar 

  • DeDuve C, Hausser-Siller I (1994) Ursprung des Lebens : Präbiotische Evolution und die Entstehung der Zelle. Spektrum Akadademischer Verlag, Heidelberg

    Google Scholar 

  • Delaney ML (1998) Phosphorus accumulation in marine sediments and the oceanic phosphorus cycle. Global Biogeochem Cycles 12:563–572

    Google Scholar 

  • De Putter T, Mees F, Decrée S, Dewaele S (2010) Malachite, an indicator of major Pliocene Cu remobilization in a karstic environment. (Katanga, Democratic Republic of Congo). Ore Geol Rev 38:90–100

    Google Scholar 

  • Dèry P, Anderson B, 2007. Peak phosphorus. Energy Bulletin.

    Google Scholar 

  • Dosseto A, Turner SP, Chappell J (2008) The evolution of weathering profiles through time: New insights from uraniumseries isotopes. Earth Planet Sci Lett 274:359–371

    Google Scholar 

  • Duggen S, Hoernle K, Bogaard P van den, Rüpke L, Morgan JP (2003) Deep roots of the Messinian salinity crisis. Nature 422:602–606

    Google Scholar 

  • Duggen, S., K. Hoernle,P. van den und D. Garbe-Schönberg, 2005. Post-collisional transition from subduction- to Intraplatetype magmatism in the westernmost Mediterranean: Evidence for continental-edge delamination of subcontinental lithosphere. Journal of Petrology 46, 1155–1201.

    Google Scholar 

  • Ehrenreich A, Widdel F (1994) Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Applied Environmental Microbiology 60:4517–4526

    Google Scholar 

  • El Desouky HA, Muchez P, Cailteux J (2009) Two Cu-Co sulfide phases and contrasting fluid systems in the Katanga Copperbelt, Democratic Republic of Congo. Ore Geol Rev 36:315–332

    Google Scholar 

  • Emmerich M, 2013. Paläontologie: Eiserne Spuren urzeitlicher Mikroben. Spektrum.de, http://www.spektrum.de/alias/palaeontologie/eiserne-spuren-urzeitlicher-mikroben/1192103 (accessed 4.24.13).

  • Evans RK (2008) An abundance of lithium. World Lithium, Santiago

    Google Scholar 

  • Force ER, Cannon WF (1988) Depositional model for shallowmarine manganese deposits around black shale basins. Econ Geol 83:93–117

    Google Scholar 

  • Frimmel HE (2002) Genesis of the World's largest gold deposits. Science 297:1815–1817

    Google Scholar 

  • Frimmel HE (2005) Archaean atmospheric evolution: evidence from the Witwatersrand gold fields, South Africa. Earth Sci Rev 70:1–46

    Google Scholar 

  • Frimmel HE (2008) Earth's continental crustal gold endowment. Earth Planet Sci Lett 267:45–55

    Google Scholar 

  • Garrels RM, Christ CL (1965) Solutions, minerals, and equilibria. Harper & Row, New York

    Google Scholar 

  • Germann K, 1981. Phosphat-Gesteine. Lagerstätten der Steine, Erden und Industrieminerale, Vademecum. GDMB Verlag Chemie, 159–165.

    Google Scholar 

  • Gilbert N (2009) The disappearing nutrient. Nature 461:716–718

    Google Scholar 

  • Golightly JP, 1979. Nickeliferous laterites: a general description, in: International Laterite Symposium, New Orleans, Society of Mining Engineers, American Institute of Mining, Metallurgical, and Petroleum Engineers, 38–56.

    Google Scholar 

  • Grace H (1991) Investigations in Kenya and Malawi using as-dug laterite as bases for bituminous surfaced roads. Geotech Geol Eng 9:183–195

    Google Scholar 

  • Graham RC, Rossi AM, Hubbert KR (2010) Rock to regolith conversion: Producing hospitable substrates for terrestrial ecosystems. GSA Today 20:4–9

    Google Scholar 

  • Grotzinger JP, Rothman DH (1996) An abiotic model for stromatolite morphogenesis. Nature 383:423–425

    Google Scholar 

  • Harder H, 1989. Mineral genesis in Ironstones: a model based upon laboratory experiments and petrographic observations. In: Phanerozoic Ironstones, Geol. Soc. Special Publication. 9–18.

    Google Scholar 

  • Hardisty J, 1990. Beaches: form & process: numerical experiments with monochromatic waves on the orthogonal profile. Unwin Hyman, London, Boston.

    Google Scholar 

  • Haubold H, Katzung G, Schaumberg G, 2006. Die Fossilien des Kupferschiefers: Pflanzen- und Tierwelt zu Beginn des Zechsteins; eine Erzlagerstätte und ihre Paläontologie. Westarp-Wissenschaften, Hohenwarsleben.

    Google Scholar 

  • Heinrich D, Holland und M, Schidlowski M, 1982. Mineral Deposits and the Evolution of the Biosphere. Berlin, Heidelberg.

    Google Scholar 

  • Hoashi M, Bevacqua DC, Otake T, Watanabe Y, Hickman AH, Utsunomiya S, Ohmoto H (2009) Primary haematite formation in an oxygenated sea 3.46 billion years ago. Nat Geosci 2:301–306

    Google Scholar 

  • Hoffman PF, Schrag DP (2002) The snowball Earth hypothesis: testing the limits of global change. Terra Nova 14:129–155

    Google Scholar 

  • Holland HD (2002) Volcanic gases, black smokers, and the great oxidation event. Geochim Cosmochim Acta 66:3811–3826

    Google Scholar 

  • Holland HD, Schidlowski M (Hrsg) (1982) Mineral deposits and the evolution of the biosphere. Springer, Berlin

    Google Scholar 

  • Horstmann UE, Cornell DH, Fryer BJ, Scheepers R, Walraven F, 2001. Rare earth elements and Nd isotopic compositions in banded iron-formations of the Griqualand West Sequence, Northern Cape Province, South Africa. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 152, 439–465.

    Google Scholar 

  • Hou B, Fabris AJ, Keeling JL, Fairclough MC (2007) Cenozoic palaeochannel-hosted uranium and current exploration methods, South Australia. Mesa Journal 46:34–39

    Google Scholar 

  • Hough RM, Butt CRM, Reddy SM, Verrall M (2007) Gold nuggets: supergene or hypogene? Aust J Earth Sci 54:959–964

    Google Scholar 

  • James HL (1954) Sedimentary facies of iron-formation. Econ Geol 49:253–293

    Google Scholar 

  • Jorgenson JD, 2012. World Mine Production and Reserves - Iron Ore. USGS.

    Google Scholar 

  • Kappler A, Pasquero C, Konhauser KO, Newman DK (2005) Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology 33:865–868

    Google Scholar 

  • Kasting JF (1987) Theoretical constraints on oxygen and carbon dioxide concentrations in the Precambrian atmosphere. Precambrian Res 34:205–229

    Google Scholar 

  • Kesler SE, Gruber PW, Medina PA, Keoleian GA, Everson MP, T. J. Wallington, 2012. Global lithium resources: relative importance of pegmatite, brine and other deposits. Ore Geology Reviews 48, 55–69.

    Google Scholar 

  • Kimberley MM (1980) The Paz de Rio oolitic inland-sea iron formation. Econ Geol 75:97–106

    Google Scholar 

  • Kimberley MM (1989) Exhalative origins of iron formations. Ore Geol Rev 5:13–145

    Google Scholar 

  • Kirk J, Ruiz J, Chesley J, Titley S, Walshe J (2001) A detrital model for the origin of gold and sulfides in the Witwatersrand basin based on Re-Os isotopes. Geochim Cosmochim Acta 65:2149–2159

    Google Scholar 

  • Kirk J, Ruiz J, Chesley J, Walshe J, G. England, 2002. A major Archean, gold- and crust-forming event in the Kaapvaal Craton, South Africa. Science 297, 1856–1858.

    Google Scholar 

  • Klein C (2005) Some Precambrian banded iron-formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origins. Am Mineral 90:1473–1499

    Google Scholar 

  • Köhler I, Konhauser K, Kappler A (2010) Role of Microorganisms in Banded Iron Formations. In: Barton LT, Mandl M, Loy A (Hrsg) Geomicrobiology: Molecular and environmental perspective. Springer, Heidelberg

    Google Scholar 

  • Köhler I, Konhauser KO, Papineau D, Bekker A, Kappler A, 2013. Biological carbon precursor to diagenetic siderite with spherical structures in iron formations. Nature Communications 4.

    Google Scholar 

  • Konhauser KO, Hamade T, Raiswell R, Morris RC, Ferris FG, Southam G, Canfield DE (2002) Could bacteria have formed the Precambrian banded iron formations? Geology 30:1079–1082

    Google Scholar 

  • Konhauser KO, Newman DK, Kappler A (2005) The potential significance of microbial Fe(III) reduction during deposition of Precambrian banded iron formations. Geobiology 3:167–177

    Google Scholar 

  • Konhauser KO, Amskold L, Lalonde SV, Posth NR, Kappler A, Anbar A (2007) Decoupling photochemical Fe(II) oxidation from shallow-water BIF deposition. Earth Planet Sci Lett 258:87–100

    Google Scholar 

  • Krapez B, Barly ME, Pickard AL (2003) Hydrothermal and resedimented origins of the precursor sediments to banded iron formation: sedimentological evidence from the Early Palaeoproterozoic Brockman Supersequence of Western Australia. Sedimentology 50:979–1011

    Google Scholar 

  • Krauskopf KB (1957) Separation of manganese from iron in sedimentary processes. Geochim Cosmochim Acta 12:61–84

    Google Scholar 

  • Kucha H, Przylowicz W (1999) Noble metals in organic matter and clay-organic matrices, Kupferschiefer, Poland. Econ Geol 94:1137–1162

    Google Scholar 

  • Kucha H, Pawlikowski M (1986) Two-brine model of the genesis of strata-bound Zechstein deposits (Kupferschiefer type), Poland. Mineral Deposita 21:70–80

    Google Scholar 

  • Kühne WG (1976) Goldtransport durch Inlandeis. Dem Andenken von Egon Erwin Kisch (1885–1948) gewidmet. Der Aufschluss 27:165–169

    Google Scholar 

  • Kühne WG (1983) Gold für uns aus der Kiesgrube. Der Aufschluss 34:215–218

    Google Scholar 

  • Langer E, 1969. Die Nickellagerstätte des Morro do Niquel in Minas Gerais, Brasilien: ihr Aufschluss, ihre Bemusterung und Bewertung. Gebr. Borntraeger.

    Google Scholar 

  • Lascelles DF (2007) Black smokers and density currents: A uniformitarian model for the genesis of banded iron-formations. Ore Geol Rev 32:381–411

    Google Scholar 

  • Lee Bray E, 2012. Bauxite and Alumina. U.S. Geological Survey, Mineral Commodity Summaries.

    Google Scholar 

  • Liedtke M, Vasters J, 2008. Renaissance des deutschen Kupferschieferbergbaus? Bundesamt für Geologie und Rohstoffe, Commodity Top News 29.

    Google Scholar 

  • Lierl H-J, Jans W, 1990. Geschiebegold aus Schleswig-Holstein. Geschiebekunde aktuell 6, 47, 49–57.

    Google Scholar 

  • Lottermoser BG (1990) Rare-earth element mineralisation within the Mt. Weld carbonatite laterite, Western Australia. Lithos 24:151–167

    Google Scholar 

  • Louthean P (Hrsg), 2004. The Australian mines handbook 2003/04 edition 71.

    Google Scholar 

  • Lowe DR (1980) Stromatolites 3,400-Myr old from the Archean of Western Australia. Nature 284:441–443

    Google Scholar 

  • Machens E (2011) Hans Merensky – Geologe und Mäzen: Platin, Gold und Diamanten in Afrika. Schweizerbart, Stuttgart

    Google Scholar 

  • Mann AW (1984) Mobility of gold and silver in lateritic weathering profiles; some observations from Western Australia. Econ Geol 79:38–49

    Google Scholar 

  • Mann AW, Deutscher RL, R.L (1978) Genesis principles for the precipitation of carnotite in calcrete drainages in Western Australia. Econ Geol 73:1724–1737

    Google Scholar 

  • McCuaig TC, Behn M, Stein H, Hagemann SG, McNaughton NJ, Cassidy KF, Champion D, Wyborn L, 2001. The Boddington gold mine: a new style of Archaean Au-Cu deposit, in: Fourth International Archaean Symposium, Extended Abstracts. 453–455.

    Google Scholar 

  • Meier C, 2010. Rohstoffe: Bevor der Dünger ausgeht – Spektrum.de http://www.wissenschaft-online.de/artikel/1024445%26_z=859070 (accessed 3.20.13).

  • Meyer FM, Happel U, Hausberg J, Wiechowski A (2002) The geometry and anatomy of the Los Pijiguaos bauxite deposit, Venezuela. Ore Geol Rev 20:27–54

    Google Scholar 

  • Minter AHG, 1978. A sedimentological synthesis of placer gold, uranium and pyrite concentrations in Proterozoic Witwatersrand deposits. In: A. D. Miall (Hrsg.), Fluvial Sedimentology. Canadian Society for Petroleum Geology, Memoir 5, 801–829.

    Google Scholar 

  • Morris RC, 1985. Genesis of iron ore in banded iron-formation by supergene and supergene-metamorphic processes – a conceptual model. In : K. H. Wolf (Hrsg.), Handbook of stratabound and stratiform ore deposits. Elsevier, Amsterdam, 13, 73–235.

    Google Scholar 

  • Morris RC (2002) Genesis of high-grade hematite orebodies of the Hamersley Province, Western Australia – a discussion. Econ Geol 97:177–181

    Google Scholar 

  • Ochsenius C, 1877. Die Bildung der Steinsalzlager und ihrer Mutterlaugensalze unter specieller Berücksichtigung der Flötze von Douglashall in der egeln'schen Mulde. C. E. M. Pfeffer, Halle.

    Google Scholar 

  • Oftedahl C (1958) A theory of exhalative-sedimentary ores. Geologiska Föreningen i Stockholm Förhandlingar 80:1–19

    Google Scholar 

  • Oszczepalski S (1999) Origin of the Kupferschiefer polymetallic mineralization in Poland. Mineral Deposita 34:599–613

    Google Scholar 

  • Pašava J, Oszczepalski S, Du A (2010) Re-Os age of non-mineralized black shale from the Kupferschiefer, Poland, and implications for metal enrichment. Mineral Deposita 45:189–199

    Google Scholar 

  • Petrascheck WE (1989) The genesis of allochthonous karst-type bauxite deposits of Southern Europe. Mineral Deposita 24:77–81

    Google Scholar 

  • Pickard AL (2002) SHRIMP U-Pb zircon ages of tuffaceous mudrocks in the Brockman Iron Formation of the Hamersley Range, Western Australia. Aust J Earth Sci 49:491–507

    Google Scholar 

  • Pickard AL, Barley ME, Krapez B (2004) Deep-marine depositional setting of banded iron formation: sedimentological evidence from interbedded clastic sedimentary rocks in the early Palaeoproterozoic Dales Gorge Member of Western Australia. Sediment Geol 170:37–62

    Google Scholar 

  • Piestrzynski A, Pieczonka J, Gluszek A (2002) Redbed-type gold mineralisation, Kupferschiefer, south-west Poland. Mineral Deposita 37:512–528

    Google Scholar 

  • Planavsky N, Rouxel O, Bekker A, Shapiro R, Fralick P, Knudsen A (2009) Iron-oxidizing microbial ecosystems thrived in late Paleoproterozoic redox-stratified oceans. Earth Planet Sci Lett 286:230–242

    Google Scholar 

  • Porrenga D (1967) Glauconite and chamosite as depth indicators in the marine environment. Mar Geol 5:495–501

    Google Scholar 

  • Posth NR, Konhauser KO, Kappler A (2008) Alternating Si and Fe deposition caused by temperature fluctuations in Precambrian oceans. Nat Geosci 10:703–708

    Google Scholar 

  • Poulton SW, Fralick PW, Canfield DE (2010) Spatial variability in oceanic redox structure 1.8 billion years ago. Nat Geosci 3:486–490

    Google Scholar 

  • Preidl. M. und M. Metzler (1984) The sedimentation of copper-bearing shales (Kupferschiefer) in the Sudetic foreland. Mineral Deposita 19:243–248

    Google Scholar 

  • Reedman JH (1984) Resources of phosphate, niobium, iron, and other elements in residual soils over the Sukulu carbonatite complex, southeastern Uganda. Econ Geol 79:716–724

    Google Scholar 

  • Reith F, Rogers SL, McPhail DC, Webb D (2006) Biomineralization of gold: biofilms on bacterioform gold. Science 313:233–236

    Google Scholar 

  • Richter-Bernburg G, 1953. Über salinare Sedimentation. Zeitschrift der Deutschen Gesellschaft für Geowissenschaften 105, 593–645.

    Google Scholar 

  • Ries G (2001) Lateritische Nickellagerstätten in Neu Kaledonien. Der Aufschluss 52:79–83

    Google Scholar 

  • Ries G (2007) Die Entwicklung der Erdatmosphäre. Der Aufschluss 58:217–226

    Google Scholar 

  • Ries G (2010) Die Entwicklungsgeschichte der Erdatmosphäre und ihres Sauerstoffgehaltes. Bergbau 61:109–118

    Google Scholar 

  • Risacher F, Alonso H, Salazar C (2003) The origin of brines and salts in Chilean salars: a hydrochemical review. Earth Sci Rev 63:249–293

    Google Scholar 

  • Robb LJ, Meyer FM (1995) The Witwatersrand Basin, South Africa: Geological framework and mineralization processes. Ore Geology Review 10:67–94

    Google Scholar 

  • Santosh M, Omana PK (1991) Very high purity gold form lateritic weathering profiles of Nilambur, southern India. Geology 19:746–749

    Google Scholar 

  • Sawlowicz Z (1989) On the origin of copper mineralization in the Kupferschiefer: a sulphur isotope study. Terra Nova 1/4:339–343

    Google Scholar 

  • Schellmann W, 1983. Geochemical principles of lateritic nickel ore formation, in: Proceedings of the international seminar of laterisation processes, 2o, São Paulo. 119–135.

    Google Scholar 

  • Schlüter T (1991) Systematik, Palökologie und Biostratonomie von Phalacrocorax kuehnaeus nov. spec., einem fossilen Kormoran (Aves: Phalacrocoracidae) aus mutmaßlich oberpliozänen Phosphoriten N Tansanias. Berliner Geowissenschaftliche Abhandlungen. A 134:279–309

    Google Scholar 

  • Schoettle M, Friedmann GM (1971) Fresh Water Iron-Manganese Nodules in Lake George, New York. Geol Soc Am Bull 82:101–110

    Google Scholar 

  • Schultz L (1993) Planetologie: eine Einführung. Birkhäuser, Basel, Boston

    Google Scholar 

  • Simonson BM (1985) Sedimentological constraints on the origins of Precambrian iron-formations. Geol Soc Am Bull 96:244–252

    Google Scholar 

  • Slack JF, Grenne T, Bekker A, Rouxel OJ, Lindberg PA (2007) Suboxic deep seawater in the late Paleoproterozoic: Evidence from hematitic chert and iron formation related to seafloorhydrothermal sulfide deposits, central Arizona, USA. Earth Planet Sci Lett 255:243–256

    Google Scholar 

  • Slack JF, Cannon WF (2009) Extraterrestrial demise of banded iron formations 1.85 billion years ago. Geology 37:1011–1014

    Google Scholar 

  • Smirnov VI (1989) European part of the USSR. Mineral deposits of. Europe 4:279–407

    Google Scholar 

  • Sorby HC (1857) On the origin of the Cleveland Hill ironstone. Geol Polytechnic Soc West Riding Yorkshire Proc 3:457–461

    Google Scholar 

  • Squyres SW, Grotzinger JP, Arvidson RE, Bell JF, Calvin W, Christensen PR, Clark BC, Crisp JA, Farrand WH, Herkenhoff KE, Johnson JR, Klingelhöfer G, Knoll AH, McLennan SM, McSween HY, Morris RV, Rice JW, Rieder R, Soderblom LA (2004) In Situ Evidence for an Ancient Aqueous Environment at Meridiani Planum, Mars. Science 306:1709–1714

    Google Scholar 

  • Sun Y-Z, Püttmann W, W (2000) The role of organic matter during copper enrichment in Kupferschiefer from the Sangerhausen basin, Germany. Org Geochem 31:1143–1161

    Google Scholar 

  • Talbot CJ, Pohjola V (2009) Subaerial salt extrusions in Iran as analogues of ice sheets, streams and glaciers. Earth Sci Rev 97:155–183

    Google Scholar 

  • Tardy Y, 1997. Petrology of laterites and tropical soils. A. A. Balkema, Rotterdam, Netherlands; Brookfield, VT, USA.

    Google Scholar 

  • Taylor D, Dalstra HJ, Harding AE, Broadbent GC, Barley ME (2001) Genesis of high-grade hematite orebodies of the Hamersley Province, Western Australia. Econ Geol 96:837–873

    Google Scholar 

  • Taylor D, Dalstra HJ, Harding AE (2002) Genesis of highgrade hematite orebodies of the Hamersley Province, Western Australia – a reply. Econ Geol 97:179–181

    Google Scholar 

  • Thiel H (2001) Evaluation of the environmental consequences of polymetallic nodule mining based on the results of the TUSCH Research Association. Deep Sea Research Part II: Topical Studies in. Oceanography 48:3433–3452

    Google Scholar 

  • Thiel H, Schriever G, Ahnert A, Bluhm H, Borowski C, Vopel K (2001) The large-scale environmental impact experiment DISCOL – reflection and foresight. Deep Sea Research Part II: Topical Studies in. Oceanography 48:3869–3882

    Google Scholar 

  • Towe KM (1996) Environmental oxygen conditions during the origin and early evolution of life. Adv Space Res 18:7–15

    Google Scholar 

  • Trechow P, 2011. Lithium – ein Spannungsmacher auf Kreislaufkurs. ingenieur.de. http://www.ingenieur.de/Themen/Rohstoffe/Lithium-Spannungsmacher-Kreislaufkurs (accessed 4.18.13).

  • Troly G, Esterle M, Pelletier B, Reibell W, 1979. Nickel deposits in New Caledonia: some factors influencing their formation, in: Proceedings of the international symposium of lateritisation processes, New Orleans, 81–119.

    Google Scholar 

  • Valayashko MG (1958) Die wichtigsten geochemischen Parameter für die Bildung der Kalisalzlagerstätten. Freiburger Forschungshefte A 123:197–233

    Google Scholar 

  • Valeton I, Biermann M, Reche R, Rosenberg F (1987) Genesis of nickel laterites and bauxites in greece during the jurassic and cretaceous, and their relation to ultrabasic parent rocks. Ore Geol Rev 2:359–404

    Google Scholar 

  • Van de Kerkhof S, 2002. In: Pierenkemper, T. (Hrsg). Die Industrialisierung europäischer Montanregionen im 19. Jahrhundert. Franz Steiner Verlag, 225–275.

    Google Scholar 

  • Van Kauwenbergh SJ (1991) Overview of phosphate deposits in East and Southeast Africa. Fertilizer Research 30:127–150

    Google Scholar 

  • Van Straaten P, 2002. Rocks for Crops: Agrominerals of Sub-Saharan Africa. ICAF, Nairobi, Kenya.

    Google Scholar 

  • Van Wyk, P. und l. F. Pienaar, 1986. Diamondiferous gravels of the lower Orange River, Namaqualand, In: Mineral Deposits of Southern Africa. Johannesburg: Geol. Soc. S. Afr. 2.173–2.191.

    Google Scholar 

  • Vaughan DJ, Sweeney MA, Friedrich G, Diedel R, Haranczyk C (1989) The Kupferschiefer; an overview with an appraisal of the different types of mineralization. Econ Geol 84:1003–1027

    Google Scholar 

  • Wagner T, Okrusch M, Weyer S, Lorenz J, Lahaye Y, Taubald H, Schmitt R (2010) The role of the Kupferschiefer in the formation of hydrothermal base metal mineralization in the Spessart ore district, Germany: insight from detailed sulfur isotope studies. Mineral Deposita 45:217–239

    Google Scholar 

  • Wang X, Müller WEG (2009) Marine biominerals: perspectives and challenges for polymetallic nodules and crusts. Trends Biotechnol 27:375–383

    Google Scholar 

  • Wang X, Schröder HC, Wiens M, Schloßmacher U, Müller WEG (2009) Manganese/polymetallic nodules: Microstructural characterization of exolithobiontic and endolithobiontic microbial biofilms by scanning electron microscopy. Micron 40:350–358

    Google Scholar 

  • Wang Y, Xu H, Merino E, Konishi H (2009) Generation of banded iron formations by internal dynamics and leaching of oceanic crust. Nat Geosci 2:781–784

    Google Scholar 

  • Warren JK (2010) Evaporites through time: Tectonic, climatic and eustatic controls in marine and nonmarine deposits. Earth Sci Rev 98:217–268

    Google Scholar 

  • Weber KA, Achenbach LA, Coates JD (2006) Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nat Rev Microbiol 4:752–764

    Google Scholar 

  • Whattam SA (2009) Arc-continent collisional orogenesis in the SW Pacific and the nature, source and correlation of emplaced ophiolitic nappe components. Lithos 113:88–114

    Google Scholar 

  • Widdel S, Schnell S, Heising S, Ehrenreich A, Assmus B, Schink B (1993) Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362:834–836

    Google Scholar 

  • Yamaguchi KE, n.d. Iron isotope compositions of Fe-oxide as a measure of water-rock interaction: An example from Precambrian tropical laterite in Botswana. Frontier Research on Earth Evolution (IFREE Report for 2003–2004).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Neukirchen, F., Ries, G. (2014). Lagerstätten durch Sedimentation und Verwitterung. In: Die Welt der Rohstoffe. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37739-6_5

Download citation

Publish with us

Policies and ethics