Skip to main content

Zelluläre Mechanismen des Alterns

  • Chapter
  • First Online:
Altern
  • 8431 Accesses

Zusammenfassung

Altern und Lebensdauer werden nach jetzigem Wissensstand wesentlich durch folgende Faktoren bestimmt: – Oxidative Schäden der DNA, von Proteinen und Lipiden, darunter Schäden besonders an Mitochondrien. Eine Akkumulation solcher Schäden findet sich vor allem in postmitotischen Geweben wie Nerven- und Muskelzellen. – Verkürzung der Chromosomenenden. – Instabilität des Genoms. – proliferative Seneszenz der Zelle. – programmierten Zelltod (Apoptose). – Genpolymorphismen/Gendefekte, die die Reparatur z. B. von DNA-Schäden oder die Resistenz gegen die schädigenden Radikale vermindern, aber auch Stoffwechselgleichgewichte verändern. – Verringerte Nahrungszufuhr bewirkt eine Verlängerung der Lebensdauer bei Modellorganismen, beim Menschen sind die Befunde noch unklar. Dieser Faktor wirkt offenbar über den Insulin/Insulin-like growth factor-Signalweg, der bei erhöhter Aktivierung eine frühzeitigere Seneszenz von Geweben bewirkt. Verursacher der zellulären Schäden sind hauptsächlich reaktive Sauerstoffspezies (ROS) und Stickstoffspezies (RNS), wobei die meisten ROS als Nebenprodukt der mitochondrialen Atmungskette gebildet werden. Die eigene zelluläre Abwehr gegen ROS/RNS ist ein wichtiger Faktor gegen den Alterungsprozess. Die Antioxidantien werden z. T. mit der Nahrung aufgenommen (z. B. Vitamine A, C, E), eine zuverlässige Therapie mit Antioxidantien ist allerdings immer noch nicht etabliert. Gesunde Ernährung und Bewegung sind weiterhin die wichtigsten Komponenten für einen gesunden Alterungsprozess.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Albrecht SC, Barata AG, Großhans J et al (2011) In vivo mapping of hydrogen peroxide and oxidized glutathione reveals chemical and regional specificity of redox homeostasis. Cell Metab 14:819–829

    Article  PubMed  CAS  Google Scholar 

  • Alfassi ZB (Hrsg) (1999) General aspects of the chemistry of radicals. Wiley, Chichester

    Google Scholar 

  • Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants and the degenerative diseases of aging. Proc Natl Acad Sci USA 90:7915–7922

    Article  PubMed  CAS  Google Scholar 

  • Anderson ME (1998) Glutathione: an overview of biosynthesis and modulation. Chem Biol Interact 24:1–14

    Article  Google Scholar 

  • Arai Y, Kojima T, Takayama M, Horose N (2009) The metabolic syndrome, IGF-1 and insulin action. Mol Cell Endocrinol 299:124–128

    Article  PubMed  CAS  Google Scholar 

  • Ashrafi G, Schwarz TL (2012) The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ 20(1):31–42. doi:10.1038/cdd.2012.81

    Article  PubMed  Google Scholar 

  • Baker DJ, Wijshake T, Tchkonia T et al (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479:232–236

    Article  PubMed  CAS  Google Scholar 

  • Banan A, Fitzpatrick L, Zhang Y, Keshavarzian A (2001) OPC-compounds prevent oxidant-induced carbonylation and depolymerization of the F-actin cytoskeleton and intestinal barrier hyperpermeability. Free Radic Biol Med 30:287–298

    Article  PubMed  CAS  Google Scholar 

  • Barja G (1998) Mitochondrial free radical production and aging in mammals and birds. Ann NY Acad Sci 20:224–238

    Article  Google Scholar 

  • Barja G (2004) Aging in vertebrates and the effect of caloric restriction: a mitochondrial free radical production-DNA damage mechanism? Biol Rev Camb Philos Soc 79:235–251

    Article  PubMed  Google Scholar 

  • Barja G, Herrero A (2000) Oxidative damage to mitochondrial DNA is inversely related to maximum life span in the heart and brain of mammals. FASEB J 14:312–318

    PubMed  CAS  Google Scholar 

  • Beckman KB, Ames BN (1998) Mitochondrial aging open questions. Ann NY Acad Sci 854:118–127

    Article  PubMed  CAS  Google Scholar 

  • Ben-Zevi A, Miller EA, Morimoto RJ (2009) Collapse of proteostasis represents an early molecular event in Caenorhabditis elegans aging. Proc Natl Acad Sci USA 106:14914–14919

    Article  Google Scholar 

  • Blagosklonny MV (2010) Revisiting the antagonistic pleiotropy theory of aging: TOR-driven program and quasi-program. Cell Cycle 9:3151–3156

    Article  PubMed  CAS  Google Scholar 

  • Blasco MA (2002) Telomerase beyond telomeres. Nat Rev 2:1–6

    Google Scholar 

  • Böhm V, Puspitasari-Nienaber NL, Ferruzzi MG, Schwartz S (2002) Trolox equivalent antioxidant capacity of different geometrical isomers of α-carotene, β-carotene, lycopene and zeaxanthin. J Agric Food Chem 50:221–226

    Article  PubMed  Google Scholar 

  • Bonafe M, Barbieri M, Marchegiani F, Olivieri F et al (2003) Polymorphic variants of insulin-like growth factor1 (IGF-1) receptor and phosphoinositide 3-kinase genes affect IGF-1 plasma levels and human longevity: cues for an evolutionary conserved mechanism of life span control. J Clin Endocrinol Metab 88:3299–3304

    Article  PubMed  CAS  Google Scholar 

  • Brigelius-Flohe R, Traber MG (1999) Vitamin E: function and metabolism. FASEB J 13:1145–1155

    PubMed  CAS  Google Scholar 

  • Burgering BMT, Medema RH (2003) Decisions on life and death: FOXO Forkhead transcription factors are in command when PKB/Akt is off duty. J Leukoc Biol 73:689–701

    Article  PubMed  CAS  Google Scholar 

  • Cherkas LF, Hunkin JL, Kato BS, Richards JB, Gardner JP, Surdulescu GL, Kimura M, Lu X, Spector TD, Aviv A (2008) The association between physical activity in leisure time and leukocyte telomere length. Arch Intern Med 168:154–158

    Article  PubMed  Google Scholar 

  • Choi J, Fauce SR, Effros RB (2008) Reduced telomerase activity in human lymphocytes exposed to cortisol. Brain Behav Immun 22:600–605

    Article  PubMed  CAS  Google Scholar 

  • Chung WH, Dao RL, Chen LK, Hung SI (2010) The role of genetic variants in human longevity. Ageing Res Rev 9(Suppl 1):67–78

    Article  Google Scholar 

  • Curtin JF, Donovan M, Cotter TG (2002) Regulation and measurement of oxidative stress in apoptosis. J Immunol Methods 265:49–72

    Article  PubMed  CAS  Google Scholar 

  • Davies KJ (2000) Oxidative stress, antioxidant defenses and damage removal, repair and replacement systems. IUBMB Life 50:279–289

    Article  PubMed  CAS  Google Scholar 

  • Deelen J, Beekman M, Capri M, Franceschi C, Slagboom PE (2013) Identifying the genomic determinants of aging and longevity in human population studies: progress and challenges. Bioessays 35:386–96

    Google Scholar 

  • Dringen R, Gutterer JM, Hirrlinger J (2000) Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem 267:4912–4916

    Article  PubMed  CAS  Google Scholar 

  • Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    PubMed  Google Scholar 

  • Epel ES, Blackburn EH, Lin J, Firdaus S, Dhabhar FS, Adler NE, Morrow JD, Cawthon RM (2004) Accelerated telomere shortening in response to life stress. PNAS 101:17312–17315

    Article  PubMed  CAS  Google Scholar 

  • Fang JC, Kinlay S, Beltrame J, Hikiti H, Wainstein M, Behrendt D, Suh J, Frei B, Mudge GH, Selwyn AP, Ganz P (2002) Effect of vitamins C and E on progression of transplant-associated arterioscleroris: a randomised trial. Lancet 359:1108–1113

    Article  PubMed  CAS  Google Scholar 

  • Floyd RA (1999) Antioxidants, oxidative stress and degenerative neurological disorders. Proc Soc Exp Biol Med 222:236–245

    Article  PubMed  CAS  Google Scholar 

  • Grandison RC, Piper MD, Partridge L (2009) Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature 462:1061–1064

    Article  PubMed  CAS  Google Scholar 

  • Gravina S, Vijg J (2010) Epigenetic factors in aging and longevity. Pflugers Arch 459:247–258

    Article  PubMed  CAS  Google Scholar 

  • Gredilla R, Bohr VA, Stevnser T (2010) Mitochondrial DNA repair and association with aging—an update. Exp Gerontol 45:478–488

    Article  PubMed  CAS  Google Scholar 

  • Guarente L, Kenyon C (2000) Genetic pathways that regulate ageing in model organisms. Nature 408:255–262

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B (1996) Oxidative stress, nutrition and health. Experimental strategies for optimisation of nutritional antioxidant intake in humans. Free Radic Res 25:57–74

    Article  PubMed  CAS  Google Scholar 

  • Harman D (1956) Aging: A theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    Article  PubMed  CAS  Google Scholar 

  • Harman D (1972) The biological clock: the mitochondria? J Am Geriatr Soc 20:145–147

    PubMed  CAS  Google Scholar 

  • Höhn A, Jung T, Grimm S, Catagol B, Weber D, Grune T (2011) Lipofuscin inhibits the proteasome by binding to surface motifs. Free Radic Biol Med 50:585–591

    Article  PubMed  Google Scholar 

  • Holzenberger M et al (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421:182–187

    Article  PubMed  CAS  Google Scholar 

  • Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA (2007) Life and death: metabolic rate, membrane composition, and life span of animals. Physiol Rev 87:1175–1213

    Article  PubMed  CAS  Google Scholar 

  • Imai S (2009) The NAD World: a new systemic regulatory network for metabolism and aging – SIRT1, systemic NAD biosynthesis, and their importance. Cell Biochem Biophys 53:65–74

    Article  PubMed  CAS  Google Scholar 

  • Inoue M, Sato EF, Nishikawa M, Park AM, Kira Y, Imada I, Utsum P (2003) Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr Med Chem 10:2495–2505

    Article  PubMed  CAS  Google Scholar 

  • Kator K, Cristofalo V, Charpentier R, Cutler RG (1985) Dysdifferentiative nature of aging: passage number dependency of globin gene expression in normal human diploid cells grown in tissue culture. Gerontology 31:355–361

    Article  PubMed  CAS  Google Scholar 

  • Kelly G (2010) A review of the sirtuin system, its clinical implications, and the potential role of dietary activators like resveratrol: part 1. Altern Med Rev 15:245–263

    PubMed  Google Scholar 

  • Kelly DP (2011) Aging theories unified. Nature 470:342–343

    Article  PubMed  CAS  Google Scholar 

  • Kiffin R, Kaushik S, Zang M, Bandyopadhyay U et al (2007) Altered dynamics of the lysosomal receptor for chaperone-mediated autophagy with age. J Cell Sci 120:782–791

    Article  PubMed  CAS  Google Scholar 

  • Knight JA (1998) Free radicals: their history and current status in aging and disease. Ann Clin Lab Sci 28:331–346

    PubMed  CAS  Google Scholar 

  • Koga H, Kaushik S, Cuervo AM (2011) Protein homeostasis and aging: The importance of exquisite quality control. Ageing Res Rev 10:205–215

    Article  PubMed  CAS  Google Scholar 

  • Kurosu H et al (2005) Suppression of aging in mice by the hormone Klotho. Science 309:1829–1833

    Article  PubMed  CAS  Google Scholar 

  • Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Reviews 81:807–859

    CAS  Google Scholar 

  • Leutner S, Eckert A, Muller WE (2001) ROS generation, lipid peroxidation and antioxidant enzyme activities in the aging brain. J Neural Transm 108:955–967

    Article  PubMed  CAS  Google Scholar 

  • Liebler DC (1998) Antioxidant chemistry of α-tocopherol in biological systems – roles of redox cycles and metabolism. Subcell Biochem 30:301–317

    Article  PubMed  CAS  Google Scholar 

  • Lunetta KL, D’Agostino RB Sr, Karasik D, Benjamin EJ, Guo CY, Govindaraju R, Kiel DP, Kelly-Hayes M, Massaro JM, Pencina MJ, Seshadri S, Murabito JM (2007) Genetic correlates of longevity and selected age-related phenotypes: a genome-wide association study in the Framingham Study. BMC Med Genet 8(Suppl):13

    Article  Google Scholar 

  • Maegawa S, Hinkal G, Kim HS, Shen L, Zhang L, Zhang J, Zhang N, Liang S, Donehower LA, Issa JP (2010) Wide spread and tissue specific age-related DNA methylation changes in mice. Genome Res 20:332–340

    Article  PubMed  CAS  Google Scholar 

  • Marini M, Lapolombella R, Canaider S, Farina S et al (2004) Heat shock response by EBV-immortalized B-lymphocytes from centenarians and control subjects: a model to study the relevance of stress response in longevity. Exp Gerontol 39:83–90

    Article  PubMed  CAS  Google Scholar 

  • Marnett LJ (2002) Oxyradicals, lipid peroxidation and DNA damage. Toxicology 181/182:219–222

    Article  Google Scholar 

  • Masoro EJ (2001) Physiology of aging. Int J Sport Nutr Exerc Metab Suppl:218–222

    Google Scholar 

  • Masoro EJ (2006) Caloric restriction and aging: controversial issues. J Gerontol 61:14–19

    Article  Google Scholar 

  • Mathon NF, Lloyd AC (2001) Cell senescence and cancer. Nature Reviews Cancer 1:203–213

    Article  PubMed  CAS  Google Scholar 

  • Melov S (2002) Animal models of oxidative stress: aging and therapeutic antioxidant interventions. Intern J Biochem Cell Biol 34:1395–1400

    Article  CAS  Google Scholar 

  • Møller P, Løhr M, Folkmann JK, Mikkelsen L, Loft S (2010) Aging and oxidatively damaged nuclear DNA in animal organs. Free Radic Biol Med 48:1275–1285

    Article  PubMed  Google Scholar 

  • Morimoto RJ (2008) Proteotoxic stress and inducible chaperone networks in neurodegeneration disease and aging. Genes Dev 22:1427–1438

    Article  PubMed  CAS  Google Scholar 

  • Okereke OI, Prescott J, Wong JYY, Han J et al (2012) High phobic anxiety is related to lower leukocyte telomere length in women. PLoS ONE 7(7):e40516. doi: 10.1371/ journal.pone.0040516

    Article  PubMed  CAS  Google Scholar 

  • Orr WC, Sohal RS (1994) Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263:1128–1130

    Article  PubMed  CAS  Google Scholar 

  • Partridge L et al (2005) Dietary restriction in Drosophila. Mech Ageing Dev 126:938–950

    Article  PubMed  CAS  Google Scholar 

  • Pearl R (1928) The rate of living. Knopf, New York

    Google Scholar 

  • Pérez VI, Buffenstein R, Masamsetti V et al (2009) Protein stability and resistance to oxidative stress are determinants of longevity in the longest-living rodent, the naked mole-rat. PNAS106:3059–3064

    Google Scholar 

  • Pryor WA (2000) Vitamin E and heart disease: basic science to clinical intervention trials. Free Radic Biol Med 28:141–164

    Article  PubMed  CAS  Google Scholar 

  • Rea SL, Wu D, Cypser JR, Vaupel JW, Johnson TE (2005) A stress-sensitive reporter predicts longevity in isogenic populations of Caenorhabditis elegans. Nat Genet 37:894–898

    Article  PubMed  CAS  Google Scholar 

  • Rensing L, Meyer-Grahle U, Ruoff P (2001) Biologische Uhren. Timing Mechanismen in der Natur. Biol Unserer Zeit 31:305–311

    Article  CAS  Google Scholar 

  • Rensing L, Gosslau A (2004) Warum altern wir? Zur Rolle freier Radikale bei der Begrenzung der Lebenszeit. Blickpunkt der Mann 2:7–12

    Google Scholar 

  • Rensing L, Koch M, Rippe B, Rippe V (2006) Mensch im Stress. Psyche, Körper, Moleküle. Spektrum/Elsevier, Heidelberg

    Google Scholar 

  • Rensing L (2007) Die Grenzen der Lebensdauer. Von welchen zellulären Faktoren wird das Altern bestimmt? Biologie in unserer Zeit 37: 190–199

    Google Scholar 

  • Richards JB, Valdes AM, Gardner JP, Paximadas D, Kimura M, Nessa A, Lu X, Surdulescu GL, Swaminathan R, Specor TD, Aviv A (2007) Higher serum vitamin D concentrations are associated with longer leukocyte telomere length in women. Am J Clin Nutr 86:1420–1425

    PubMed  CAS  Google Scholar 

  • Rodier F, Kim SH, Nijjar T, Yaswen P, Campisi J (2005) Cancer and aging: the importance of telomeres in genome maintenance. Int J Biochem Cell Biol 37:977–990

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez KA, Wywial E, Perez VI et al (2011) Walking the oxidative stress tightrope: a perspective from the naked mole-rat, the longest-living rodent. Curr Pharm 17:2290–2307

    Article  CAS  Google Scholar 

  • Rodràguez-Rodero S, Fernández-Morena JL, Fernandez AF, Menéndez-Torre E, Fraga MF (2010) Epigenetic regulation of aging. Discov Med 10:225–233

    Google Scholar 

  • Rubner M (1908) Das Problem der Lebensdauer. Oldenburg, München

    Google Scholar 

  • Rush JW, Turk JR, Laughlin MH (2003) Exercise training regulates SOD-1 and oxidative stress in porcine aortic endothelium. Am J Physiol Heart Circ Physiol 284:H1378–1387

    PubMed  CAS  Google Scholar 

  • Sahin E, Colla S, Liesa M, Moslehi J et al (2011) Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470:359–365

    Article  PubMed  CAS  Google Scholar 

  • Schulz-Aellen MF (1997) Aging and human longevity. Birkhäuser, Boston

    Book  Google Scholar 

  • Schumacher B, Garinis GA, Hoeijmakers JHJ (2008) Age to survive: DNA damage and aging. Trends Genet 24:77–85

    Article  PubMed  CAS  Google Scholar 

  • Sebastiani P, Solovieff N, Dewan AT, Walsh KM et al (2012) Genetic signatures of exceptional longevity in humans. PLoS One 7: e29848

    Google Scholar 

  • Selman C, Tullet JM, Wieser D et al (2009) Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 326:140–144

    Article  PubMed  CAS  Google Scholar 

  • Sies H (1993) Strategies of antioxidant defense. Eur J Biochem 215:213–219

    Article  PubMed  CAS  Google Scholar 

  • Singh R, Kølvraa S, Bross P, Christensen K, Bathum L, Gregersen N, Tan Q, Rattan SI (2010) Anti-inflammatory heat shock protein 70 genes are positively associated with human survival. Curr Pharm Des 16:796–801

    Article  PubMed  CAS  Google Scholar 

  • Slagboom PE, Heijmans BT, Beekman M, Westendorp RG, Meulenbelt I (2000) Genetics of human aging. The search for genes contributing to human longevity and diseases of the old. Ann NY Acad Sci 908:50–63

    Article  PubMed  CAS  Google Scholar 

  • Soerensen M, Gredilla R, Müller-Ohldach M, Werner A et al (2009) A potential impact of DNA repair on aging and lifespan in the aging model organism Podospora anserina: decrease in mitochondrial DNA repair activity during aging. Mech Ageing Dev 130:487–496

    Article  PubMed  CAS  Google Scholar 

  • Takubo K, Aida J, Izumiyama-Shimomura N, Ishikawa N, Sawabe M, Kurabayashi R, Shiriaishi H, Arai T, Nakamura K (2010) Changes of telomere length with aging. Geriatr Gerontol Int 10(Suppl 1):197–206

    Article  Google Scholar 

  • Tra J, Kondo T, Lu Q, Kuick R, Hanash S, Richardson B (2002) Infrequent occurrence of age-dependent changes in CpG island methylation as detected by restriction landmark genome scanning. Mech Aging Dev 123:1487–1503

    Article  PubMed  CAS  Google Scholar 

  • Viarengo A, Burlando B, Ceratto N, Panfoli I (2000) Antioxidant role of metallothioneins: a comparative overview. Cell Mol Biol 46:407–417

    PubMed  CAS  Google Scholar 

  • Vijg J, Suh Y (2005) Genetics of longevity and aging. Ann Rev Med 56:193–212

    Article  PubMed  CAS  Google Scholar 

  • Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283:1482–1488

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Zhang X, Li JJ (2002) The role of the NFKB in the regulation of cell stress responses. Internat Immunopharmacol 2:1509–1520

    Article  CAS  Google Scholar 

  • Wang Y, Martinez-Vicente M, Kruger U, Kaushik S, Wong E et al (2009) Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum Mol Genet 18:4153–4170

    Article  PubMed  CAS  Google Scholar 

  • Weber TA, Reichert AS (2010) Impaired quality control of mitochondria: aging from a new perspective. Exp Gerontol 45:503–511

    Article  PubMed  CAS  Google Scholar 

  • Westerheide SD, Anckar J, Stevens Jr SM, Sistonen L, Morimoto RL (2009) Stress inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science 323:1063–1066

    Article  PubMed  CAS  Google Scholar 

  • Wilson JX (1997) Antioxidant defense of the brain: a role for astrocytes. Can J Physiol Pharmacol 75:1149–1163

    Article  PubMed  CAS  Google Scholar 

  • Wollam J, Magomedova L, Magner DB, Shen Y, Rottiers V, Motola DL, Mangelsdorf DJ, Cummins CL, Antebi A (2011) The Rieske oxygenase DAF-36 functions as a cholesterol 7-desaturase in steroidogenic pathways governing longevity. Aging Cell 10:879–884

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Fang YZ, Yang S, Lupton JR, Turner ND (2004) Gluthatione metabolism and its implications for health. J Nutr 134:489–492

    PubMed  CAS  Google Scholar 

  • Xu D, Tahara H (2012) The role of exosomes and microRNAs in senescence and aging. Adv Drug Deliv Rev 65(3):368–375. doi: 10.1016/j.addr.2012.07.010

    Article  PubMed  Google Scholar 

  • Yu BP, Kang CM, Han JS, Kim DS (1998) Biofactors 7: 93–101

    Google Scholar 

  • Zhang XH, Weissbach H (2008) Origin and evolution of the protein-repairing enzymes methionine sulphoxide reductases. Biol Rev Camb Philos Soc 83:249–257

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludger Rensing .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rensing, L., Rippe, V. (2014). Zelluläre Mechanismen des Alterns. In: Altern. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37733-4_2

Download citation

Publish with us

Policies and ethics