Private Over-Threshold Aggregation Protocols

  • Myungsun Kim
  • Abedelaziz Mohaisen
  • Jung Hee Cheon
  • Yongdae Kim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7839)


In this paper, we revisit the private k  +  data aggregation problem, and formally define the problem’s security requirements as both data and user privacy goals. To achieve both goals, and to strike a balance between efficiency and functionality, we devise a novel cryptographic construction that comes in two schemes; a fully decentralized construction and its practical but semi-decentralized variant. Both schemes are provably secure in the semi-honest model. We analyze the computational and communication complexities of our construction, and show that it is much more efficient than the existing protocols in the literature.


Privacy-preservation over-threshold data privacy user privacy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aggarwal, G., Mishra, N., Pinkas, B.: Secure computation of the k th-ranked element. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 40–55. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Algesheimer, J., Camenisch, J., Shoup, V.: Efficient computation modulo a shared secret with application to the generation of shared safe-prime products. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 417–432. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Applebaum, B., Ringberg, H., Freedman, M.J., Caesar, M., Rexford, J.: Collaborative, privacy-preserving data aggregation at scale. In: Atallah, M.J., Hopper, N.J. (eds.) PETS 2010. LNCS, vol. 6205, pp. 56–74. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Burkhart, M., Dimitropoulos, X.: Fast privacy-preserving top-k queries using secret sharing. In: IEEE ICCCN (2010)Google Scholar
  5. 5.
    Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.: SEPIA: Privacy-preserving aggregation of multi-domain network events and statistics. In: USENIX Security (2010)Google Scholar
  6. 6.
    Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  8. 8.
    Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 368–387. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Goldreich, O.: The foundations of cryptography. Cambridge University Press (2004)Google Scholar
  10. 10.
    Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. (1984)Google Scholar
  11. 11.
    Groth, J.: A verifiable secret shuffle of homomorphic encryptions. J. of Cryptology (2010)Google Scholar
  12. 12.
    Groth, J., Lu, S.: Verifiable shuffle of large size ciphertexts. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 377–392. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Hong, J., Kim, J.W., Kim, J., Park, K., Cheon, J.H.: Constant-round privacy preserving multiset union. In: Cryptology ePrint Archive, 2011/138 (2011)Google Scholar
  14. 14.
    Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Mohaisen, A., Hong, D., Nyang, D.: Privacy in location based services: Primitives toward the solution. In: NCM (2008)Google Scholar
  16. 16.
    Naor, M., Pinkas, B.: Oblivious transfer with adaptive queries. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 573–590. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  17. 17.
    Neff, C.: A verifiable secret shuffle and its application to e-voting. In: ACM Conference on Computer and Communications Security, pp. 116–125 (2001)Google Scholar
  18. 18.
    Nguyen, L., Safavi-Naini, R., Kurosawa, K.: Verifiable shuffles: A formal model and a paillier-based efficient construction with provable security. In: Jakobsson, M., Yung, M., Zhou, J. (eds.) ACNS 2004. LNCS, vol. 3089, pp. 61–75. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Nishide, T., Ohta, K.: Multiparty computation for interval, equality, and comparison without bit-decomposition protocol. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 343–360. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  20. 20.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  21. 21.
    Sang, Y., Shen, H.: Efficient and secure protocols for privacy-preserving set operations. ACM Transactions on Information and System Security (TISSEC) 13(1), 9:1–9:35 (2009)Google Scholar
  22. 22.
    Vaidya, J., Clifton, C.: Privacy-preserving top-k queries. In: ICDE (2005)Google Scholar
  23. 23.
    Xiong, L., Chitti, S., Liu, L.: Topk queries across multiple private databases. In: International Conference on Distributed Computing Systems (ICDCS), pp. 145–154 (2005)Google Scholar
  24. 24.
    Yao, A.: Protocols for secure computations. In: FOCS, pp. 160–164 (1982)Google Scholar
  25. 25.
    Zhang, R., Shi, J., Liu, Y., Zhang, Y.: Verifiable fine-grained top-k queries in tiered sensor networks. In: INFOCOM, pp. 2633–2641 (2010)Google Scholar
  26. 26.
    Zhang, R., Zhang, Y., Zhang, C.: Secure top-k query processing via untrusted location-based service providers. In: INFOCOM, pp. 1170–1178 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Myungsun Kim
    • 1
  • Abedelaziz Mohaisen
    • 2
  • Jung Hee Cheon
    • 3
  • Yongdae Kim
    • 4
  1. 1.University of SuwonSuwonSouth Korea
  2. 2.VeriSign LabsUSA
  3. 3.Seoul National UniversitySeoulSouth Korea
  4. 4.Korea Advanced Institute of Science and TechnologyDaejeonSouth Korea

Personalised recommendations