Advertisement

Batch Verification Suitable for Efficiently Verifying a Limited Number of Signatures

  • Keisuke Hakuta
  • Yosuke Katoh
  • Hisayoshi Sato
  • Tsuyoshi Takagi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7839)

Abstract

Batch verification is a method for verifying digital signatures at once. Batch verification can reduce the computational cost compared to that of verifying each signature one by one, and in particular, batch verification is especially appropriate for systems which are required to verify a large amount of signatures. However, in addition to the above requirement, several types of systems might also require verifying a limited number of digital signatures more and more efficiently in real-time. For this purpose, to improve the efficiency of verifying a limited number of signatures is presumably an important matter. This paper deals with the second requirement and proposes an efficient batch verification technique suitable for verifying a limited number of signatures in real-time. Our method can only be applied to elliptic curve based signatures, and uses one of the two special families of elliptic curves.

Keywords

digital signature batch verification elliptic curve Frobenius expansion endomorphism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antipa, A., Brown, D., Gallant, R., Lambert, R., Struik, R., Vanstone, S.: Accelerated Verification of ECDSA Signatures. In: Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 307–318. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Brickell, E.F., Gordon, D.M., McCurley, K.S., Wilson, D.B.: Fast Exponentiation with Precomputation. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 200–207. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Garay, J.A., Rabin, T.: Fast Batch Verification for Modular Exponentiation and Digital Signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 236–250. Springer, Heidelberg (1998), http://www-cse.ucsd.edu/users/mihir CrossRefGoogle Scholar
  4. 4.
    Boyd, C., Pavlovski, C.: Attacking and Repairing Batch Verification Schemes. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 58–71. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Camenisch, J., Hohenberger, S., Pedersen, M.Ø.: Batch Verification of Short Signatures. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 246–263. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Cheon, J.H., Lee, D.H.: Use of Sparse and/or Complex Exponents in Batch Verification of Exponentiations. IEEE Transactions on Computers 55(12), 1536–1542 (2006)CrossRefGoogle Scholar
  7. 7.
    Coron, J.-S., Naccache, D.: On the Security of RSA Screening. In: Imai, H., Zheng, Y. (eds.) PKC 1999. LNCS, vol. 1560, pp. 197–203. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Cheon, J.H., Yi, J.H.: Fast Batch Verification of Multiple Signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 442–457. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Guo, F., Mu, Y., Chen, Z.: Efficient Batch Verification of Short Signatures for a Single-Signer Setting without Random Oracles. In: Matsuura, K., Fujisaki, E. (eds.) IWSEC 2008. LNCS, vol. 5312, pp. 49–63. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Gallant, R.P., Lambert, R.J., Vanstone, S.A.: Faster Point Multiplication on Elliptic Curves with Efficient Endomorphisms. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 190–200. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Harn, L.: Batch Verifying Multiple DSA Digital Signatures. Electronics Letters 34(9), 870–871 (1998)CrossRefGoogle Scholar
  12. 12.
    Harn, L.: Batch Verifying Multiple RSA Digital Signatures. Electronics Letters 34(12), 1219–1220 (1998)CrossRefGoogle Scholar
  13. 13.
    Hankerson, D., Menezes, A., Vanstone, S.: Guide to Elliptic Curve Cryptography. Springer, New York (2004)zbMATHGoogle Scholar
  14. 14.
    Harrison, K., Page, D., Smart, N.P.: Software Implementation of Finite Fields of Characteristic Three, for Use in Pairing-based Cryptosystems. LMS Journal of Computation and Mathematics 5(1), 181–193 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Hwang, M.S., Lee, C.C., Lu, E.J.: Cryptanalysis of the Batch Verifying Multiple DSA-Type Digital Signatures. Pakistan Journal of Applied Sciences 1(3), 287–288 (2001)Google Scholar
  16. 16.
    Hakuta, K., Katoh, Y., Sato, H., Takagi, T.: Batch Verification Suitable for Efficiently Verifying A Limited Number of Signatures. In: Preproceedings of the 15th Annual International Conference on Information Security and Cryptology, ICISC 2012 (2012)Google Scholar
  17. 17.
    Hakuta, K., Sato, H., Takagi, T.: Efficient arithmetic on subfield elliptic curves over small finite fields of odd characteristic. J. Math. Cryptol. 4(3), 199–238 (2010)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Hakuta, K., Sato, H., Takagi, T.: Explicit lower bound for the length of minimal weight τ-adic expansions on Koblitz curves. J. Math-for-Ind. 2A, 75–83 (2010)MathSciNetGoogle Scholar
  19. 19.
    Koblitz, N.: An Elliptic Curve Implementation of the Finite Field Digital Signature Algorithm. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 327–337. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  20. 20.
    National Institute for Standards and Technology, Digital Signature Standard (DSS), Federal Information Processing Standards Publication 186-3 (June 2009), http://csrc.nist.gov/publications/fips/fips186-3/fips_186-3.pdf
  21. 21.
    Lee, S., Cho, S., Choi, J., Cho, J.: Efficient Identification of Bad Signatures in RSA-Type Batch Signatures. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E89-A(1), 74–80 (2006)CrossRefGoogle Scholar
  22. 22.
    Naccache, D., M’Raïhi, D., Vaudenay, S., Raphaeli, D.: Can D.S.A be Improved? Complexity trade-offs with the Digital Signature Standard. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 77–85. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  23. 23.
    Pastuszak, J., Michałek, D., Pieprzyk, J., Seberry, J.: Identification of Bad Signatures in Batches. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 28–45. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  24. 24.
    Park, T.-J., Lee, M.-K., Park, K.: New Frobenius Expansions for Elliptic Curves with Efficient Endomorphisms. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 264–282. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  25. 25.
    Silverman, J.H.: The Arithmetic of Elliptic Curves. GTM, vol. 106. Springer (1986)Google Scholar
  26. 26.
    Smart, N.P.: Elliptic Curve Cryptosystems over Small Fields of Odd Characteristic. Journal of Cryptology 12(2), 141–151 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology 4(3), 161–174 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Solinas, J.A.: Efficient Arithmetic on Koblitz Curves. Des. Codes Cryptogr. 19(2-3), 195–249 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Stanek, M.: Attacking LCCC Batch Verification of RSA Signatures. International Journal of Network Security 6(2), 238–240 (2008)Google Scholar
  30. 30.
    Kumar, V., Madria, S.: Secure Data Aggregation in Wireless Sensor Networks. In: Hara, T., Zadorozhny, V.I., Buchmann, E. (eds.) Wireless Sensor Network Technologies for the Information Explosion Era. SCI, vol. 278, pp. 77–107. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  31. 31.
    Yen, S.M., Laih, C.S.: Improved Digital Signature Suitable for Batch Verification. IEEE Transactions on Computers 44(7), 957–959 (1995)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Keisuke Hakuta
    • 1
    • 2
  • Yosuke Katoh
    • 2
  • Hisayoshi Sato
    • 1
  • Tsuyoshi Takagi
    • 3
  1. 1.Yokohama Research LaboratoryHitachi, Ltd.YokohamaJapan
  2. 2.Graduate School of MathematicsKyushu UniversityFukuokaJapan
  3. 3.Institute of Mathematics for IndustryKyushu UniversityFukuokaJapan

Personalised recommendations