Advertisement

Efficient Group Signatures in the Standard Model

  • Laila El Aimani
  • Olivier Sanders
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7839)

Abstract

In a group signature scheme, group members are able to sign on behalf of the group. Since the introduction of this cryptographic authentication mechanism, several schemes have been proposed but only few of them enjoy a security in the standard model. Moreover, those provided in the standard model suffer the recourse to non standard-assumptions, or the expensive cost and bandwidth of the resulting signature.

We provide three practical group signature schemes that are provably secure in the standard model under standard assumptions. The three schemes permit dynamic enrollment of new members while keeping a constant size for both keys and group signatures, and they improve the state-of-the art by several orders of magnitude.

Keywords

Group signature bilinear groups standard model non- interactive zero-knowledge 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe, M., Fuchsbauer, G., Groth, J., Haralambiev, K., Ohkubo, M.: Structure-preserving signatures and commitments to group elements. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 209–236. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Ateniese, G., Camenisch, J., Hohenberger, S., de Medeiros, B.: Practical group signatures without random oracles. IACR Cryptology ePrint Archive, 2005:385 (2005) Google Scholar
  3. 3.
    Bellare, M., Boldyreva, A., Palacio, A.: An uninstantiable random-oracle-model scheme for a hybrid-encryption problem. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 171–188. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal definitions, simplified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: The case of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Bichsel, P., Camenisch, J., Neven, G., Smart, N.P., Warinschi, B.: Get shorty via group signatures without encryption. In: Garay, J.A., De Prisco, R. (eds.) SCN 2010. LNCS, vol. 6280, pp. 381–398. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: Atluri, V., Pfitzmann, B., McDaniel, P.D. (eds.) ACM Conference on Computer and Communications Security, pp. 168–177. ACM (2004)Google Scholar
  8. 8.
    Boyen, X., Waters, B.: Compact group signatures without random oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Boyen, X., Waters, B.: Full-domain subgroup hiding and constant-size group signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 1–15. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited (preliminary version). In: Vitter, J.S. (ed.) STOC, pp. 209–218. ACM (1998)Google Scholar
  12. 12.
    Chaum, D.: Some weaknesses of “Weaknesses of undeniable signatures”. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 554–556. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  13. 13.
    Delerablée, C., Pointcheval, D.: Dynamic fully anonymous short group signatures. In: Nguyen, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 193–210. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    El Aimani, L., Sanders, O.: Efficient Group Signatures in the Standard Model. Cryptology ePrint Archive (2012)Google Scholar
  15. 15.
    Groth, J.: Fully anonymous group signatures without random oracles. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 164–180. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym Systems (Extended Abstract). In: Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer, Heidelberg (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Laila El Aimani
    • 1
  • Olivier Sanders
    • 1
  1. 1.Technicolor, Security & Content Protection LabsCesson-Sévigné CedexFrance

Personalised recommendations