Advertisement

An Improved Hardware Implementation of the Grain-128a Stream Cipher

  • Shohreh Sharif Mansouri
  • Elena Dubrova
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7839)

Abstract

We study efficient high-throughput hardware implementations of the Grain-128a family of stream ciphers. To increase the throughput compared to the standard design, we apply five different techniques in combination: isolation of the authentication section, Fibonacci-to-Galois transformation of the feedback shift registers, multi-frequency implementation, simplification of the pre-outputs functions and internal pipelining. The combined effect of all these techniques enables an average 56% higher keystream generation throughput among all the ciphers, at the expense of an average 8% area penalty, an average 4% power overhead and a 21% slower keystream initialization phase. An alternative combination of techniques allows an average 23% throughput improvement in all phases.

Keywords

Critical Path Product Term Stream Cipher Register Transfer Level Feedback Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Good, T., Benaissa, M.: ASIC hardware performance. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 267–293. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Robshaw, M., Billet, O. (eds.): New Stream Cipher Designs: The eSTREAM Finalists. LNCS, vol. 4986. Springer, Heidelberg (2008)Google Scholar
  3. 3.
    Hell, M., Johansson, T., Maximov, A., Meier, W.: The Grain family of stream ciphers. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 179–190. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Babbage, S., Dodd, M.: The mickey stream ciphers. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 191–209. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    De Cannière, C., Preneel, B.: Trivium. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 244–266. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Good, T., Benaissa, M.: Hardware results for selected stream cipher candidates. In: Workshop Record of Stream Ciphers 2007 (SASC 2007), pp. 191–204 (2007)Google Scholar
  7. 7.
    Mansouri, S., Dubrova, E.: An improved hardware implementation of the grain stream cipher. In: 2010 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools (DSD), pp. 433–440 (September 2010)Google Scholar
  8. 8.
    Chabloz, J.-M., Mansouri, S.S., Dubrova, E.: An algorithm for constructing a fastest galois nlfsr generating a given sequence. In: Carlet, C., Pott, A. (eds.) SETA 2010. LNCS, vol. 6338, pp. 41–54. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Agren, M., Hell, M., Johansson, T., Meier, W.: Grain-128a: a new version of grain-128 with optional authentication. Int. J. Wire. Mob. Comput. 5, 48–59 (2011)CrossRefGoogle Scholar
  10. 10.
    Balph, T.: Lfsr counters implement binary polynomial generators. Motorola Semiconductor, EDN 43, 155–156 (1998)Google Scholar
  11. 11.
    Dubrova, E.: A transformation from the fibonacci to the galois nlfsrs. IEEE Transactions on Information Theory 55(11), 5263–5271 (2009)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Golomb, S.: Shift Register Sequences. Aegean Park Press (1982)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Shohreh Sharif Mansouri
    • 1
  • Elena Dubrova
    • 1
  1. 1.Department of Electronic SystemsRoyal Institute of TechnologyStockholmSweden

Personalised recommendations