An Information-Theoretically Secure Threshold Distributed Oblivious Transfer Protocol

  • Christian L. F. Corniaux
  • Hossein Ghodosi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7839)


The unconditionally secure Distributed Oblivious Transfer (DOT) protocol presented by Blundo, D’Arco, De Santis, and Stinson at SAC 2002 allows a receiver to contact k servers and obtain one out of n secrets held by a sender.

Once the protocol has been executed, the sender does not know which secret was selected by the receiver and the receiver knows nothing of the secrets she did not choose. In addition, the receiver’s privacy is guaranteed against a coalition of k − 1 servers and similarly, the sender’s security is guaranteed against a coalition of k − 1 servers. However, after the receiver has obtained a secret, she is able to learn all secrets by corrupting one server only. In addition, an external mechanism is required to prevent the receiver from contacting more than k servers.

The one-round DOT protocol we propose is information-theoretically secure, allows the receiver to contact k servers or more, and guarantees the sender’s security, even if the receiver corrupts k − 1 servers after having obtained a secret.


Cryptographic Protocol Distributed Oblivious Transfer Commodity Based Model Information-Theoretic Security 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beaver, D.: Commodity-based cryptography. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pp. 446–455. ACM (1997)Google Scholar
  2. 2.
    Beimel, A., Chee, Y.M., Wang, H., Zhang, L.F.: Communication-efficient distributed oblivious transfer. Journal of Computer and System Sciences 78(4), 1142–1157 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Bennett, C.H., Brassard, G., Crépeau, C., Skubiszewska, M.-H.: Practical Quantum Oblivious Transfer. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 351–366. Springer, Heidelberg (1992)Google Scholar
  4. 4.
    Blundo, C., D’Arco, P., De Santis, A., Stinson, D.R.: New Results on Unconditionally Secure Distributed Oblivious Transfer. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 291–309. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Blundo, C., D’Arco, P., De Santis, A., Stinson, D.R.: On Unconditionally Secure Distributed Oblivious Transfer. Journal of Cryptology 20(3), 323–373 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Brassard, G., Crépeau, C., Robert, J.M.: All-or-Nothing Disclosure of Secrets. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 234–238. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  7. 7.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. John Wiley & Sons, Inc., Hoboken (2006)zbMATHGoogle Scholar
  8. 8.
    Even, S., Goldreich, O., Lempel, A.: A Randomized Protocol for Signing Contracts. Communications of the ACM 28, 637–647 (1985)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Gao, S.: A new algorithm for decoding Reed-Solomon codes. In: Bhargava, V.K., Poor, H.V., Tarokh, V., Yoon, S. (eds.) Communications, Information and Network Security, pp. 55–68. Kluwer Academic Publishers (2003)Google Scholar
  10. 10.
    Gertner, Y., Malkin, T.: Efficient Distributed (n choose 1) Oblivious Transfer. Tech. rep., MIT Lab of Computer Science (1997)Google Scholar
  11. 11.
    Naor, M., Pinkas, B.: Distributed Oblivious Transfer. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 205–219. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  12. 12.
    Nikov, V., Nikova, S., Preneel, B., Vandewalle, J.: On Unconditionally Secure Distributed Oblivious Transfer. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002. LNCS, vol. 2551, pp. 395–408. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Rabin, M.O.: How to Exchange Secrets with Oblivious Transfer. Tech. rep., Aiken Computation Lab, Harvard University (1981)Google Scholar
  14. 14.
    Reed, I., Solomon, G.: Polynomial codes over certain finite fields. Journal of the Society for Industrial and Applied Mathematics 8(2), 300–304 (1960)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Rivest, R.L.: Unconditionally Secure Commitment and Oblivious Transfer Schemes Using Private Channels and a Trusted Initializer (1999) (unpublished manuscript)Google Scholar
  16. 16.
    Shamir, A.: How to Share a Secret. Communications of the ACM 22(11), 612–613 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Shannon, C.E.: A Mathematical Theory of Communication. Bell System Technology Journal 27, 379–423, 623–656 (1948)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christian L. F. Corniaux
    • 1
  • Hossein Ghodosi
    • 1
  1. 1.James Cook UniversityTownsvilleAustralia

Personalised recommendations