Skip to main content

An Information-Theoretically Secure Threshold Distributed Oblivious Transfer Protocol

  • Conference paper
Book cover Information Security and Cryptology – ICISC 2012 (ICISC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 7839))

Included in the following conference series:

Abstract

The unconditionally secure Distributed Oblivious Transfer (DOT) protocol presented by Blundo, D’Arco, De Santis, and Stinson at SAC 2002 allows a receiver to contact k servers and obtain one out of n secrets held by a sender.

Once the protocol has been executed, the sender does not know which secret was selected by the receiver and the receiver knows nothing of the secrets she did not choose. In addition, the receiver’s privacy is guaranteed against a coalition of k − 1 servers and similarly, the sender’s security is guaranteed against a coalition of k − 1 servers. However, after the receiver has obtained a secret, she is able to learn all secrets by corrupting one server only. In addition, an external mechanism is required to prevent the receiver from contacting more than k servers.

The one-round DOT protocol we propose is information-theoretically secure, allows the receiver to contact k servers or more, and guarantees the sender’s security, even if the receiver corrupts k − 1 servers after having obtained a secret.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beaver, D.: Commodity-based cryptography. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of Computing, pp. 446–455. ACM (1997)

    Google Scholar 

  2. Beimel, A., Chee, Y.M., Wang, H., Zhang, L.F.: Communication-efficient distributed oblivious transfer. Journal of Computer and System Sciences 78(4), 1142–1157 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bennett, C.H., Brassard, G., Crépeau, C., Skubiszewska, M.-H.: Practical Quantum Oblivious Transfer. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 351–366. Springer, Heidelberg (1992)

    Google Scholar 

  4. Blundo, C., D’Arco, P., De Santis, A., Stinson, D.R.: New Results on Unconditionally Secure Distributed Oblivious Transfer. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 291–309. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Blundo, C., D’Arco, P., De Santis, A., Stinson, D.R.: On Unconditionally Secure Distributed Oblivious Transfer. Journal of Cryptology 20(3), 323–373 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brassard, G., Crépeau, C., Robert, J.M.: All-or-Nothing Disclosure of Secrets. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 234–238. Springer, Heidelberg (1987)

    Chapter  Google Scholar 

  7. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. John Wiley & Sons, Inc., Hoboken (2006)

    MATH  Google Scholar 

  8. Even, S., Goldreich, O., Lempel, A.: A Randomized Protocol for Signing Contracts. Communications of the ACM 28, 637–647 (1985)

    Article  MathSciNet  Google Scholar 

  9. Gao, S.: A new algorithm for decoding Reed-Solomon codes. In: Bhargava, V.K., Poor, H.V., Tarokh, V., Yoon, S. (eds.) Communications, Information and Network Security, pp. 55–68. Kluwer Academic Publishers (2003)

    Google Scholar 

  10. Gertner, Y., Malkin, T.: Efficient Distributed (n choose 1) Oblivious Transfer. Tech. rep., MIT Lab of Computer Science (1997)

    Google Scholar 

  11. Naor, M., Pinkas, B.: Distributed Oblivious Transfer. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 205–219. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Nikov, V., Nikova, S., Preneel, B., Vandewalle, J.: On Unconditionally Secure Distributed Oblivious Transfer. In: Menezes, A., Sarkar, P. (eds.) INDOCRYPT 2002. LNCS, vol. 2551, pp. 395–408. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  13. Rabin, M.O.: How to Exchange Secrets with Oblivious Transfer. Tech. rep., Aiken Computation Lab, Harvard University (1981)

    Google Scholar 

  14. Reed, I., Solomon, G.: Polynomial codes over certain finite fields. Journal of the Society for Industrial and Applied Mathematics 8(2), 300–304 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  15. Rivest, R.L.: Unconditionally Secure Commitment and Oblivious Transfer Schemes Using Private Channels and a Trusted Initializer (1999) (unpublished manuscript)

    Google Scholar 

  16. Shamir, A.: How to Share a Secret. Communications of the ACM 22(11), 612–613 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  17. Shannon, C.E.: A Mathematical Theory of Communication. Bell System Technology Journal 27, 379–423, 623–656 (1948)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Corniaux, C.L.F., Ghodosi, H. (2013). An Information-Theoretically Secure Threshold Distributed Oblivious Transfer Protocol. In: Kwon, T., Lee, MK., Kwon, D. (eds) Information Security and Cryptology – ICISC 2012. ICISC 2012. Lecture Notes in Computer Science, vol 7839. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37682-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37682-5_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37681-8

  • Online ISBN: 978-3-642-37682-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics