OmpSs-OpenCL Programming Model for Heterogeneous Systems

  • Vinoth Krishnan Elangovan
  • Rosa. M. Badia
  • Eduard Ayguade Parra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7760)


The advent of heterogeneous computing has forced programmers to use platform specific programming paradigms in order to achieve maximum performance. This approach has a steep learning curve for programmers and also has detrimental influence on productivity and code re-usability. To help with this situation, OpenCL an open-source, parallel computing API for cross platform computations was conceived. OpenCL provides a homogeneous view of the computational resources (CPU and GPU) thereby enabling software portability across different platforms. Although OpenCL resolves software portability issues, the programming paradigm presents low programmability and additionally falls short in performance. In this paper we focus on integrating OpenCL framework with the OmpSs task based programming model using Nanos run time infrastructure to address these shortcomings. This would enable the programmer to skip cumbersome OpenCL constructs including OpenCL plaform creation, compilation, kernel building, kernel argument setting and memory transfers, instead write a sequential program with annotated pragmas. Our proposal mainly focuses on how to exploit the best of the underlying hardware platform with greater ease in programming and to gain significant performance using the data parallelism offered by the OpenCL run time for GPUs and multicore architectures. We have evaluated the platform with important benchmarks and have noticed substantial ease in programming with comparable performance.


Memory Transfer Multicore Architecture Task Parallelism Kernel Code Data Dependency Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    Duran, A., Ayguadé, E., Badia, R.M., et al.: OmpSs: a Proposal for Programming Heterogeneous Multi-Core Architectures. Parallel Processing Letters, 173–193 (2011)Google Scholar
  3. 3.
    Perez, J.M., Badia, R.M., Labarta, J.: Handling task dependencies under strided and aliased references. In: Proceeding ICS 2010 Proceedings of the 24th ACM International Conference on Supercomputing (2010)Google Scholar
  4. 4.
  5. 5.
  6. 6.
    Parallel Program Visualization and Analysis Tool,
  7. 7.
    Ayguadé, E., Badia, R.M., Igual, F.D., Labarta, J., Mayo, R., Quintana-Ortí, E.S.: An Extension of the StarSs Programming Model for Platforms with Multiple GPUs. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 851–862. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Munshi, A., Gaster, B.R., Mattson, T.G., Fung, J., Ginsburg, D.: OpenCL Programming Guide, 1st edn. Addison-Wesley Professional (July 25, 2011) ISBN-10: 0321749642Google Scholar
  9. 9.
    Lee, J., et al.: An OpenCL framework for heterogeneous multicores with local memory. In: Proceedings of the 19th International Conference on Parallel Architectures and Compilation Techniques, PACT (2010)Google Scholar
  10. 10.
    Grewe, D., O’Boyle, M.F.P.: A Static Task Partitioning Approach for Heterogeneous Systems Using OpenCL. In: Knoop, J. (ed.) CC 2011. LNCS, vol. 6601, pp. 286–305. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Aoki, R., et al.: Hybrid OpenCL: Enhancing OpenCL for Distributed Processing. In: Parallel and Distributed Processing with Applications, ISPA (2011)Google Scholar
  12. 12.
    Gregg, C., et al.: Contention-Aware Scheduling of Parallel Code for Heterogeneous Systems. In: Poster at HotPar 2010 (2010)Google Scholar
  13. 13.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Vinoth Krishnan Elangovan
    • 1
    • 2
  • Rosa. M. Badia
    • 1
    • 3
  • Eduard Ayguade Parra
    • 1
    • 2
  1. 1.Barcelona Supercomputing CenterSpain
  2. 2.Universitat Politècnica de CatalunyaSpain
  3. 3.Artificial Intelligence Research Institute (IIIA)Spanish National Research Council (CSIC)Spain

Personalised recommendations