Skip to main content

Cyclodextrin-Based Chiral Stationary Phases for Gas Chromatography

  • Chapter
  • First Online:

Abstract

In this chapter, cyclodextrin-based chiral stationary phases (CSPs) developed for the enantiomeric separation using gas chromatography are reviewed. A correlation of the CD structure and the enantioselectivities of the resultant CSPs are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

GC:

Gas chromatography

GC-MS:

Gas chromatography

HPLC:

High-performance liquid chromatography

SFC:

Supercritical fluid chromatography

FID:

Flame ionization detection

CSP:

Chiral stationary phase

CD:

Cyclodextrin

CMP:

Chiral mobile phase additives

Chiraldex PH-A:

Permethylated S-hydroxypropyl-α-CD

Chiraldex PH-B:

Permethylated S-hydroxypropyl-β-CD

Chiraldex PH-G:

Permethylated S-hydroxypropyl-γ-CD

Chiraldex DA-A:

2,6-O-Dipentylated 3-O-acetylated α-CD

Chiraldex DA-B:

2,6-O-Dipentylated 3-O-acetylated β-CD

Chiraldex DA-G:

2,6-O-Dipentylated 3-O-acetylated γ-CD

Chiraldex TA-A:

2,6-O-Dipentylated 3-O-trifluoroacetylated α-CD

Chiraldex TA-B:

2,6-O-Dipentylated 3-O-trifluoroacetylated β-CD

Chiraldex TA-G:

2,6-O-Dipentylated 3-O-trifluoroacetylated γ-CD

Chiraldex PN-G:

2,6-O-Dipentylated 3-O-propionyl-γ-CD

Chiraldex BP-G:

2,6-O-Dipentylated 3-O-butyryl-γ-CD

Chiraldex DM-B:

Di-O-dimethyl-β-CD

Hydrodex B:

Permethylated β-CD + polysiloxane

Chiraldex B:

Permethylated β-CD + poly(dimethylsi1oxane)

Lipodex A:

2,3,6-Tri-O-pentyl-α-CD

Lipodex B:

2,3,6-Tri-O-pentyl-3-O-acetyl-α-CD

Lipodex C:

2,3,6-Tri-O-pentyl-β-CD

Lipodex D:

2,3,6-Tri-O-pentyl-3-O-acetyl-β-CD

Lipodex E:

2,3,6-Tri-O-pentyl-3-O-acetyl-γ-CD

α-Dex 120:

Permethylated α-CD (20 %)-SPB 35

β-Dex 110:

Permethylated β-CD (20 %)-SPB 35

β-Dex 120:

Permethylated γ-CD (20 %)-SPB 35

perMe-β-CD:

2,3,6-Permethyl-β-cyclodextrin

perMe-γ-CD:

2,3,6-Permethyl-γ-cyclodextrin

DMP-B:

2,6-Di-O-methyl-3-O-pentyl-β-cyclodextrin

DMP-G:

2,6-Di-O-methyl-3-O-pentyl-γ-cyclodextrin

CP-Chirasil-Dex CB:

Heptakis(2,3,6-tri-O-metil)-β-cyclodextrin

OPP:

Organophosphorus pesticide

PMHP-α-CD:

Permethyl-O-(S)-2-hydroxypropyl-α-cyclodextrin

PMHP-β-CD:

Permethyl-O-(S)-2-hydroxypropyl-β-cyclodextrin

PMHP-γ-CD:

Permethyl-O-(S)-2-hydroxypropyl-γ-cyclodextrin

DBTBCD:

Heptakis(2,6-di-O-butyl- 3-O-trifluoroacetyl)-β-CD

DNTBCD:

Heptakis(2,6-di-O-nonyl-3-O-trifluoroacetyl)-β-CD

DDTBCD:

Heptakis(2,6-di-O-dodecyl-3-O-trifluoroacetyl)-β-CD

DBBBCD:

Heptakis(2,6-di-O-butyl-3-O-butyryl)-β-CD

DPABCD:

Heptakis(2,6-di-O-pentyl-3-O-acetyl)-β-CD

20Me/P6COOMe:

6I-O-Methoxy-carbonyl-6I-deoxy-2I–VII,3I–VII,6II–VIIeicosa-O-methylcyclodextrin

20Me/P6OCH2CO OMe:

6I-O-Methoxycarbonylmethyl-2I–VII,3I–VII,6II–VII-eicosa-O -methyl-cyclodextrin

20Me/P2OCH2COOMe:

2I-O-Methoxycarbonylmethyl-2II–VII, 3I–VII,6I–VII-eicosa-O-methyl-cyclodextrin

References

  1. Schurig V (2002) Chiral separations using gas chromatography. TrAC Trends Anal Chem 21:647–661

    Article  CAS  Google Scholar 

  2. Eiceman GA (2002) Gas chromatography. Anal Chem 74:2771–2780

    Article  CAS  Google Scholar 

  3. Nie MY, Zhou LM, Liu XL et al (2000) Gas chromatographic enantiomer separation on long-chain alkylated β-cyclodextrin chiral stationary phases. Anal Chim Acta 408:279–284

    Article  CAS  Google Scholar 

  4. Clement RE, Onuska FI, Eiceman GA (1988) Gas chromatography. Anal Chem 60:279R–294R

    Article  CAS  Google Scholar 

  5. Eiceman GA, Hili HH Jr, Davani B (1994) Gas chromatography. Anal Chem 66:621R–633R

    Article  CAS  Google Scholar 

  6. Eiceman GA, Jorge GT, Overton E et al (2002) Gas chromatography. Anal Chem 74:2771–2780

    Article  CAS  Google Scholar 

  7. Kasai HF, Tsubuki M, Takahashi K et al (2002) Separation of stereoisomers of several furan derivatives by capillary gas chromatography–mass spectrometry, supercritical fluid chromatography, and liquid chromatography using chiral stationary phases. J Chromatogr A 977:125–134

    Article  CAS  Google Scholar 

  8. Vlasakova V, Tolman V, Zivny K (1993) Gas chromatographic separation of diastereoisomeric and enantiomeric forms of some fluorinated amino acids on glass capillary columns. J Chromatogr A 639:273–279

    Article  CAS  Google Scholar 

  9. Gil-Av E, Feibush B, Chsrles-Sigler R (1966) Separation of enantiomers by gas liquid chromatography with an optically active stationary phase. Tetrahedron Lett 7:1009–1025

    Article  Google Scholar 

  10. Westley JW, Halpern B, Karger BL (1968) Effect of solute structure on separation of diastereoisomeric esters and amides by gas-liquid chromatography. Anal Chem 40:2046–2049

    Article  CAS  Google Scholar 

  11. Pollock OE, Kawauchi AH (1988) Resolution of racemic aspartic acid, tryptophan, hydroxy and sulfhydryl amino acids by gas chromatography. Anal Chem 40:1356–1358

    Article  Google Scholar 

  12. Xiang Y, Sluggett GW (2012) Development and validation of a GC method for quantitative determination of enantiomeric purity of a proline derivative. J Pharm Biomed Anal 53:878–883

    Google Scholar 

  13. Schurig V (1984) Gas Chromatographic separation of enantiomers on optically active metal-complex-free stationary phases. New analytical methods (24). Angew Chem Int Ed 23:747–765

    Article  Google Scholar 

  14. Konig WA (1987) The practice of enantiomer separation by capillary gas chromatography. Hüthig, Heidelberg

    Google Scholar 

  15. Frank H, Nicholson GJ, Bayer E (1977) Rapid gas chromatographic separation of amino acid enantiomers with a novel chiral stationary phase. J Chromatogr Sci 15:174–176

    Google Scholar 

  16. Schurig V (1988) Enantiomer analysis by complexation chromatography. J Chromatogr 441:135–153

    Article  CAS  Google Scholar 

  17. Schurig V (1994) Enantiomer separation by gas chromatography on chiral stationary phases. J Chromatogr A 666:111–129

    Article  CAS  Google Scholar 

  18. Schurig V, Nowotny HP (1990) Gas chromatographic separation of enantiomers on cyclodextrin derivatives. Angew Chem Int Ed 29:939–957

    Article  Google Scholar 

  19. Anderson JL, Jenks WS, Armstrong DW et al (2002) Separation of racemic sulfoxides and sulfinate esters on four derivatized cyclodextrin chiral stationary phases using capillary gas chromatography. J Chromatogr A 946:197–208

    Article  CAS  Google Scholar 

  20. Nie MY, Zhou LM, Wang QH et al (2000) Gas chromatographic enantiomer separation on single and mixed cyclodextrin derivative chiral stationary phases. Chromatographia 51:736–740

    Article  CAS  Google Scholar 

  21. Lipkowitz KB, Pearl G, Coner B et al (1997) Explanation of where and how enantioselective binding takes place on permethylated β-cyclodextrin, a chiral stationary phase used in gas chromatography. J Am Chem Soc 119:600–610

    Article  CAS  Google Scholar 

  22. Kóscielski T, Sybilska D, Jurczak J (1983) Separation of α- and β-pinene into enantiomers in gas-liquid chromatography systems via α-cyclodextrin inclusion complexes. J Chromatogr 280:131–134

    Article  Google Scholar 

  23. Juvancz Z, Szejtli J (2002) Comparative evaluation of software for deconvolution of metabolomics data based on GC-TOF-MS. TrAC Trends Anal Chem 21:378–388

    Article  Google Scholar 

  24. Schurig V (2001) Separation of enantiomers by gas chromatography. J Chromatogr A 906:275–299

    Article  CAS  Google Scholar 

  25. Armstrong DW, Li W, Chang CD et al (1990) Polar-liquid, derivatized cyclodextrin stationary phases for the capillary gas chromatography separation of enantiomers. Anal Chem 62:914–923

    Article  CAS  Google Scholar 

  26. Armstrong DW, Tang Y, Zukowski J (1991) Resolution of enantiomeric hydrocarbon biomarkers of geochemical importance. Anal Chem 63:2858–2861

    Article  CAS  Google Scholar 

  27. Berthed A, Li W, Armstrong DW (1992) Multiple enantioselective retention mechanisms on derivatized cyclodextrin gas chromatographic chiral stationary phases. Anal Chem 64:873–879

    Article  Google Scholar 

  28. Tang Y, Zhou Y, Armstrong DW (1994) Examination of the enantioselectivity of wall- immobilized cyclodextrin copolymers in capillary gas chromatography. J Chromatogr A 666:147–159

    Article  CAS  Google Scholar 

  29. Armstrong DW, Li WY, Stalcup AM (1990) Capillary gas chromatographic separation of enantiomers with stable dipentyl-α, β- and γ-cyclodextrin-derivatized stationary phases. Anal Chim Acta 234:365–380

    Article  CAS  Google Scholar 

  30. Berthod A, Zhou EY, Le K et al (1995) Determination and use of Rohrschneider-McReynolds constants for chiral stationary phases used in capillary gas chromatography. Anal Chem 67:849–857

    Article  CAS  Google Scholar 

  31. Spanik I, Zebrowski W, Armstrong DW et al (2005) GC separation of 2-substituted ethyl propionate enantiomers on permethylated and 2,6-dimethyl-3-pentyl β- and γ-cyclodextrin stationary phases. J Sep Sci 28:1347–1356

    Article  CAS  Google Scholar 

  32. Huang K, Armstrong DW, Forro E et al (2009) Separation of enantiomers and control of elution order of β-lactams by GC using cyclodextrin-based chiral stationary phases. Chromatographia 69:331–337

    Article  CAS  Google Scholar 

  33. Juirancz Z, Grolimund K, Schurig V (1993) Pharmaceutical applications of a bonded cyclodextrin stationary phase. J Microcolumn Sep 5:459–468

    Article  Google Scholar 

  34. Vetter W, Schurig V (1997) Enantioselective determination of chiral organochlorine compounds in biota by gas chromatography on modified cyclodextrins. J Chromatogr A 774:43–175

    Google Scholar 

  35. Ghanern A, Ginatta C, Jiang ZJ et al (2003) Chirasil-β-dex with a new C11-spacer for enantioselective gas chromatography. Application to the kinetic resolution of secondary alcohols catalyzed by lipase. Chromatographia 57:S275–S281

    Article  Google Scholar 

  36. Cousin H, Trapp O, Peulon-Agasse V et al (2003) Synthesis, NMR spectroscopic characterization and polysiloxane-based immobilization of the three regioisomeric monooctenylpermethyl-β-cyclodextrins and their application in enantioselective GC. Eur J Org Chem 17:3273–3287

    Article  Google Scholar 

  37. Ruderisch A, Pfeiffer J, Schurig V (2003) Mixed chiral stationary phase containing modified resorcinarene and β-cyclodextrin selectors bonded to a polysiloxane for enantioselective gas chromatography. J Chromatogr A 994:127–135

    Article  CAS  Google Scholar 

  38. Sicoli G, Tomoyuki I, Jicsinszky L et al (2008) A maltooctaose derivative (“cyclodextrin”) as a chiral stationary phase for enantioselective gas chromatography. Eur J Org Chem 25:4241–4244

    Article  Google Scholar 

  39. Smolková-Keulemansová E (1982) Cyclodextrins as stationary phases in chromatography. J Chromatogr 251:17–34

    Article  Google Scholar 

  40. Krysl S, Smolkova-Keulemansova E (1985) Use of cyclodextrins in chromatography for selective separations, pre-concentration and preparation of defined mixtures. J Chromatogr 349:167–172

    Article  CAS  Google Scholar 

  41. Kosclelskl T, Sybllska D, Belma B et al (1986) Application of a gas-liquid chromatography system with α-cyclodextrin for monitoring the stereochemical course of β-pinene hydrogenation. Chromatographia 21:413–416

    Article  Google Scholar 

  42. Novotny HP, Schmalzmg D, Schurig V (1989) Extending the scope of enantiomer separation on diluted methylated β-cyclodextrin derivatives by high-resolution gas chromatography. J High Resolut Chromatogr 12:383–387

    Article  Google Scholar 

  43. Juvancz Z, Alexander G, Szeitli J (1987) Permethylated β-cyclodextrin as stationary phase in capillary gas chromatography. J High Resolut Chromatogr 10:105–107

    Article  CAS  Google Scholar 

  44. Schurig V, Schmalzing D, Mühleck U et al (1990) Gas chromatographic enantiomer separation on polysiloxane-anchored permethyl-β-cyclodextrin (Chirasil-Dex). J High Resolut Chromatogr 13:713–717

    Article  CAS  Google Scholar 

  45. Schurig V, Schmalzing D, Schleimer M et al (1991) Enantiomer separation on immobilized chirasil-metal and Chirasil-Dex by gas chromatography and supercritical fluid chromatography. Angew Chem Int Ed 30:987–989

    Article  Google Scholar 

  46. Armstrong DW, Tang Y, Ward T et al (1993) Derivatized cyclodextrins immobilized on fused-silica capillaries for enantiomeric separations via capillary electrophoresis, gas chromatography, or supercritical fluid chromatography. Anal Chem 65:1114–1117

    Article  CAS  Google Scholar 

  47. Natalia FU, Elisa BG, Alfredo SM (2006) Evaluation of two commercial capillary columns for the enantioselective gas chromatographic separation of organophosphorus pesticides. Talanta 70:1057–1063

    Article  Google Scholar 

  48. Takahisa E, Engel KH (2005) 2, 3-Di-O-methoxymethyl-6-O-tert-butyldimethylsilyl-γ-cyclodextrin: a new class of cyclodextrin derivatives for gas chromatographic separation of enantiomers. J Chromatogr A 1063:181–192

    Article  CAS  Google Scholar 

  49. Schmarr HG, Mosandl A, Kaunzinger A (1991) Influence of derivatization on the chiral selectivity of cyclodextrins: Alkylated/acylated cyclodextrins and γ-/δ-lactones as an example. J Microcolumn Sep 3:395–402

    Article  CAS  Google Scholar 

  50. Dietrich A, Maas B, Messer W (1992) Stereoisomeric flavor compounds, part LVIII: the use of heptakis(2,3-di-O-methyl-6-O-tert-butyldimethylsilyl)-β-cyclodextrin as a chiral stationary phase in flavor analysis. J High Resolut Chromatogr 15:590–593

    Article  CAS  Google Scholar 

  51. Mráz J, Feltl L, Smolková-Keulemansová E (1984) Cyclodextrins and methylated cyclodextrins as stationary phases in gas-solid chromatography. J Chromatogr 286:17–22

    Article  Google Scholar 

  52. Krýsl S, Smolková-Keulemansová E (1985) Use of cyclodextrins in chromatography for selective separations, pre-concentration and preparation of defined mixtures. J Chromatogr 349:167–172

    Article  Google Scholar 

  53. Smolková-Keulemansová A, Neumannová E, Feltl L (1986) Study of the stereospecific properties of cyclodextrins as gas-solid chromatographic stationary phases. J Chromatogr 365:279–288

    Article  Google Scholar 

  54. Smolková-Keulemansová E, Feitl L, Krysl S (1985) Chromatographic study of the inclusion properties of cyclodextrins: study of inclusion from the gaseous phase. J Incl Phenom Mol Recognit Chem 3:183–196

    Article  Google Scholar 

  55. König WA, Lutz S, Wenz G (1988) Cyclodextrins as chiral stationary phases in capillary gas chromatography. Part II: heptakis(3-O-acetyl-2,6-di-O-pentyl)-β-cyclodextrin. J High Resolut Chromatogr 11:506–509

    Article  Google Scholar 

  56. Nie MY, Zhou LM, Wang QH et al (2000) Gas chromatographic enantiomer separation on single and mixed cyclodextrin derivative chiral stationary phases. Chromatographia 5:736–740

    Article  Google Scholar 

  57. Nie MY, Zhou LM, Wang QH et al (2001) Enantiomer separation of mandelates and their analogs on cyclodextrin derivative chiral stationary phases by capillary GC. Anal Sci 17:1183–1187

    Article  CAS  Google Scholar 

  58. Kreidler D, Czesla H, Schurig V (2008) A mixed stationary phase containing two versatile cyclodextrin-based selectors for the simultaneous gas chromatographic enantioseparation of racemic alkanes and racemic α-amino acid derivatives. J Chromatogr B 875:208–216

    Article  CAS  Google Scholar 

  59. Chaise T, Cardinael P, Tisse S (2008) Indirect and direct approaches in the synthesis of a new mono-6-O-benzyl methylated γ-cyclodextrin as chiral selector for enantioselective gas chromatography. Tetrahedron Asymm 19:348–357

    Article  CAS  Google Scholar 

  60. Tisse S, Agasse VP, Combret JC et al (2006) Capillary gas chromatographic properties of three new mono-ester permethylated β-cyclodextrin derivatives. Anal Chim Acta 560:207–217

    Article  CAS  Google Scholar 

  61. Schurig V (1993) Pharmaceutical applications of a bonded cyclodextrin stationary phase. J Microcolumn Sep 5:459–468

    Article  Google Scholar 

  62. Ghanem A (2005) C11-Chirasil-Dex as chiral stationary phase in GC: enantioselective separation of cyclopropane derivatives. Talanta 66:1234–1241

    Article  CAS  Google Scholar 

  63. König WA, Lutz S, Luebbecke PM (1988) Cyclodextrins as chiral stationary phases in pillary gas chromatography I. Pentylated α-cyclodextrin. J Chromatogr 447:193–197

    Google Scholar 

  64. Muller P, Allenbach Y, Robert E (2003) Rhodium(II)-catalyzed olefin cyclopropanation with the phenyliodonium ylide derived from Meldrum’s acid. Tetrahedron Asymm 14:779–785

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Tang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dai, Y., Hai, J., Tang, W., Ng, SC. (2013). Cyclodextrin-Based Chiral Stationary Phases for Gas Chromatography. In: Tang, W., Ng, SC., Sun, D. (eds) Modified Cyclodextrins for Chiral Separation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37648-1_2

Download citation

Publish with us

Policies and ethics