Skip to main content

Applications to Optimal Stopping Problems

  • Chapter
  • 3593 Accesses

Part of the book series: Universitext ((UTX))

Abstract

The aim of this chapter is to show how some of the established fluctuation identities for (reflected) Lévy processes can be used to solve quite specific, but nonetheless exemplary, optimal stopping problems. To some extent, this will be done in an unsatisfactory way, without first giving a thorough account of the general theory of optimal stopping. However, we shall give rigorous proofs relying on the method of “guess and verify”. That is to say, our proofs will start with a candidate solution, the choice of which is inspired by intuition, and then we shall prove that this candidate verifies sufficient conditions in order to confirm its status as the actual solution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Right-continuity of paths is implicitly used here.

  2. 2.

    See, however, Baurdoux and van Schaik (2012) who investigate the problem of stopping as “close” the maximum as possible in an appropriate sense.

  3. 3.

    Gerber and Shiu (1994) dealt with the case of bounded variation spectrally positive Lévy processes; Boyarchenko and Levendorskii (2002a) handled a class of tempered stable processes; Chan (2004) covers the case of spectrally negative processes; Avram et al. (20022004) deal with spectrally negative Lévy processes again; Asmussen et al. (2004) look at Lévy processes which have phase-type jumps and Chesney and Jeanblanc (2004) again for the spectrally negative case.

  4. 4.

    The continuous-time arguments are also given in Kyprianou and Surya (2005). Further work in this direction can be found in Deligiannidis and Utev (2009).

  5. 5.

    In fact it is the case that \(\mathbb{P}(\tau^{*}<\infty) =1\) thanks to the law of the iterated logarithm for X, which states that

    $$\limsup_{t\uparrow\infty}\frac{X_t}{t^{1/\alpha}(2\log\log t)^{(\alpha -1)/\alpha}} =c_\alpha $$

    almost surely, for some constant c α >0.

References

  • Alili, L. and Kyprianou, A.E. (2005) Some remarks on first passage of Lévy processes, the American put and smooth pasting. Ann. Appl. Probab. 15, 2062–2080.

    Article  MATH  MathSciNet  Google Scholar 

  • Asmussen, S., Avram, F. and Pistorius, M. (2004) Russian and American put options under exponential phase-type Lévy models. Stoch. Process. Appl. 109, 79–111.

    Article  MATH  MathSciNet  Google Scholar 

  • Avram, F., Chan, T. and Usabel, M. (2002) On the valuation of constant barrier options under spectrally one-sided exponential Lévy models and Carr’s approximation for American puts. Stoch. Process. Appl. 100, 75–107.

    Article  MATH  MathSciNet  Google Scholar 

  • Avram, F., Kyprianou, A.E. and Pistorius, M.R. (2004) Exit problems for spectrally negative Lévy processes and applications to (Canadized) Russian options. Ann. Appl. Probab. 14, 215–235.

    Article  MATH  MathSciNet  Google Scholar 

  • Baurdoux, E.J. (2007) Examples of optimal stopping via measure transformation for processes with one-sided jumps. Stochastics 79, 303–307.

    MATH  MathSciNet  Google Scholar 

  • Baurdoux, E.J. (2013) A direct method for solving optimal stopping problems for Lévy processes. Preprint.

    Google Scholar 

  • Baurdoux, E.J. and van Schaik, K. (2012) Predicting the time at which a Lévy process attains its ultimate supremum. Preprint.

    Google Scholar 

  • Beibel, M. and Lerche, H.R. (1997) New look at optimal stopping problems related to mathematical finance. Stat. Sin. 7, 93–108.

    MATH  MathSciNet  Google Scholar 

  • Boyarchenko, S.I. and Levendorskii, S.Z. (2002a) Perpetual American options under Lévy processes. SIAM J. Control Optim. 40, 1663–1696.

    Article  MATH  MathSciNet  Google Scholar 

  • Chan, T. (2004) Some applications of Lévy processes in insurance and finance. Finance 25, 71–94.

    Google Scholar 

  • Chesney, M. and Jeanblanc, M. (2004) Pricing American currency options in an exponential Lévy model. Appl. Math. Finance 11, 207–225.

    Article  MATH  Google Scholar 

  • Chow, Y.S., Robbins, H. and Siegmund, D. (1971) Great Expectations: The Theory of Optimal Stopping. Houghton Mifflin, Boston.

    MATH  Google Scholar 

  • Darling, D.A., Liggett, T. and Taylor, H.M. (1972) Optimal stopping for partial sums. Ann. Math. Stat. 43, 1363–1368.

    Article  MATH  MathSciNet  Google Scholar 

  • Deligiannidis, G., Le, H., and Utev, S. (2009) Optimal stopping for processes with independent increments, and applications. J. Appl. Probab. 46, 1130–1145.

    Article  MATH  MathSciNet  Google Scholar 

  • Dynkin, E.B. (1963) The optimum choice of the instant for stopping a Markov process. Sov. Math. Dokl. 4, 627–629.

    MATH  Google Scholar 

  • Gerber, H.U. and Shiu, E.S.W. (1994) Martingale approach to pricing perpetual American options. ASTIN Bull. 24, 195–220.

    Article  Google Scholar 

  • Kendall, M. and Stuart, A. (1977) The Advanced Theory of Statistics. Vol. 1. Distribution Theory. 4th Edition. Macmillan, New York.

    MATH  Google Scholar 

  • Kyprianou, A.E. and Surya, B. (2005) On the Novikov–Shiryaev optimal stopping problem in continuous time. Electron. Commun. Probab. 10, 146–154.

    Article  MATH  MathSciNet  Google Scholar 

  • Lukacs, E. (1970) Characteristic Functions. 2nd Edition, revised and enlarged. Hafner, New York.

    MATH  Google Scholar 

  • McKean, H. (1965) Appendix: a free boundary problem for the heat equation arising from a problem of mathematical economics. Ind. Manage. Rev. 6, 32–39.

    MathSciNet  Google Scholar 

  • Mikhalevich, V.S. (1958) Bayesian choice between two hypotheses for the mean value of a normal process. Vìsn. Kiïv. Unìv. 1, 101–104.

    Google Scholar 

  • Mordecki, E. (2002) Optimal stopping and perpetual options for Lévy processes. Finance Stoch. 6, 473–493.

    Article  MATH  MathSciNet  Google Scholar 

  • Novikov, A.A. (2004) Martingales and first-exit times for the Ornstein–Uhlenbeck process with jumps. Theory Probab. Appl. 48, 288–303.

    Article  MathSciNet  Google Scholar 

  • Novikov, A.A. and Shiryaev, A.N. (2004) On an effective solution to the optimal stopping problem for random walks. Theory Probab. Appl. 49, 344–354.

    Article  MATH  MathSciNet  Google Scholar 

  • Øksendal, B., (2003) Stochastic Differential Equations. An Introduction with Applications. Springer, Berlin.

    Google Scholar 

  • Øksendal, B. and Sulem, A. (2004) Applied Stochastic Control of Jump Diffusions. Springer, Berlin.

    Google Scholar 

  • Peskir, G. and Shiryaev, A.N. (2000), Sequential testing problems for Poisson processes. Ann. Stat. 28, 837–859.

    Article  MATH  MathSciNet  Google Scholar 

  • Peskir, G. and Shiryaev, A.N. (2002) Solving the Poisson disorder problem. In, Advances in Finance and Stochastics. 295–312. Springer, Berlin.

    Chapter  Google Scholar 

  • Peskir, G. and Shiryaev, A.N. (2006) Optimal Stopping and Free-Boundary Value Problems. Lecture Notes in Mathematics, ETH Zürich, Birkhäuser, Basel.

    Google Scholar 

  • Schoutens, W. (2003) Lévy Processes in Finance. Pricing Finance Derivatives. Wiley, New York.

    Google Scholar 

  • Shepp, L. and Shiryaev, A.N. (1993) The Russian option: reduced regret. Ann. Appl. Probab. 3, 603–631.

    Article  MathSciNet  Google Scholar 

  • Shepp, L. and Shiryaev, A.N. (1994) A new look at the pricing of the Russian option. Theory Probab. Appl. 39, 103–120.

    Article  MathSciNet  Google Scholar 

  • Shiryaev, A.N. (1978) Optimal Stopping Rules. Springer, Berlin.

    MATH  Google Scholar 

  • Snell, J.L. (1952) Applications of martingale system theorems. Trans. Am. Math. Soc. 73, 293–312.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Exercises

Exercises

11.1

Suppose that X is a spectrally negative Lévy process. Consider the process \(Y^{x} = \{Y^{x}_{t} : t\geq0\}\), where \(Y^{x}_{t} = (x\vee\overline {X}_{t}) - X_{t}\). Recall the definition

$$\overline{\sigma}^x_a = \inf\bigl\{ t> 0 : Y^x_t >a\bigr\} , $$

for 0≤xa. Use the Poisson point process of excursions, described in Theorem 6.14, to show that

$$\mathbb{P}\bigl(\overline{\sigma}^x_a = \infty\bigr) = \lim_{t\uparrow\infty}\frac {W(a-x)}{W(a)} \exp\bigl\{ -tW'(a)/W(a) \bigr\} , $$

and hence \(\mathbb{P}(\overline{\sigma}^{x}_{a}<\infty) = 1\), for all 0≤xa.

11.2

The following exercise is based on Novikov and Shiryaev (2004). Suppose that X is a Lévy process and either:

$$q>0\quad\text{or}\quad q=0\quad\text{and}\quad\lim_{t\uparrow \infty}X_t = -\infty. $$

Consider the optimal stopping problem

$$ v(x) =\sup_{\tau\in\mathcal{T}}\mathbb{E}_x \bigl( \mathrm{e}^{-q\tau}\bigl(1- \mathrm{e}^{-(X_{\tau})^+}\bigr)\bigr),\quad x\in\mathbb{R}, $$
(11.33)

where \(\mathcal{T}\) is the set of \(\mathbb{F}\)-stopping times.

  1. (i)

    For a>0, prove the identity

    $$\mathbb{E}_x \bigl(\mathrm{e}^{-qT^+_a} \bigl(1 - \mathrm{e}^{ - X_{T^+_a}} \bigr)\mathbf{1}_{(T^+_a <\infty)} \bigr) = \mathbb{E}_x \biggl( \biggl(1- \frac{\mathrm{e}^{- \overline{X}_{\mathbf{e}_q}}}{\mathbb{E}(\mathrm{e}^{ - \overline{X}_{\mathbf{e}_q}})} \biggr) \mathbf{1}_{(\overline{X}_{\mathbf{e}_q} \geq a)} \biggr), $$

    where \(T^{+}_{a} = \inf\{t\geq0 : X_{t} \geq a\}\) and \(x\in\mathbb{R}\).

  2. (ii)

    Show that a solution to (11.33) is given by the pair \((v_{x^{*}}, T^{+}_{x^{*}})\), where \(v_{x^{*}}(x)\) is equal to the left-hand side of the identity in part (i) with

    $$a = x^*: = -\log\mathbb{E}\bigl(\mathrm{e}^{- \overline{X}_{\mathbf{e}_q}}\bigr). $$
  3. (iii)

    Show that there is smooth fit at x if and only if 0 is regular for (0,∞) for X, and otherwise there is continuous fit.

11.3

This exercise is taken from Baurdoux (2007) and is based on a method of Beibel and Lerche (1997). Suppose that X is a spectrally negative α-stable Lévy process, with α∈(1,2) and probabilities \(\{\mathbb{P}_{x} : x\in\mathbb{R}\}\). Let η>0 and define for, \(x\in\mathbb{R}\),

$$H(x) = \int_0^\infty\mathrm{e}^{ux - u^\alpha} u^{\alpha\eta -1}\mathrm{d}u. $$

Now suppose that h is a function on \(\mathbb{R}\) such that there exists some x satisfying

$$x^* = \mathrm{argmax}_{x\in\mathbb{R}} \frac{h(x)}{H(x)}. $$
  1. (i)

    Show that, for all \(x\in\mathbb{R}\),

    $$\frac{H((t+1)^{-1/\alpha} X_t)}{H(x)(t+1)^\eta}, \quad t\geq0 $$

    is a martingale under \(\mathbb{P}_{x}\).

  2. (ii)

    Use the martingale in part (i) to deduce that, for any stopping time τ,

    $$\mathbb{E}_x \biggl[ \frac{h((\tau+1)^{-1/\alpha} X_\tau)}{(\tau+ 1)^\eta}\mathbf{1}_{(\tau <\infty)} \biggr]\leq H(x)\frac{h(x^*)}{H(x^*)}. $$
  3. (iii)

    Define

    $$\tau^* = \inf\bigl\{ t>0 : (1+t)^{-1/\alpha}X_t = x^* \bigr\} . $$

    Assuming that \(\mathbb{P}(\tau^{*} <\infty) = 1\) for x<x ,Footnote 5 show that τ is an optimal stopping time for

    $$V(x) =\sup_{\tau}\mathbb{E}_x \biggl[ \frac{h((\tau +1)^{-1/\alpha}X_\tau )}{(\tau+ 1)^{\eta}}\mathbf{1}_{(\tau<\infty)} \biggr], $$

    for x<x , where the supremum is taken over all stopping times for X. Moreover deduce that V(x)=h(x )H(x)/H(x ).

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kyprianou, A.E. (2014). Applications to Optimal Stopping Problems. In: Fluctuations of Lévy Processes with Applications. Universitext. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37632-0_11

Download citation

Publish with us

Policies and ethics