Skip to main content

The Attoclock: A Novel Ultrafast Measurement Technique with Attosecond Time Resolution

  • Chapter
Attosecond Physics

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 177))

Abstract

The recent progress of the ultrafast laser technology enables to capture and control electrons dynamics, which is the key to understand how energy and charge are transported not only in atoms but also in more complex solid-state and molecular systems. This task calls for the development of novel measurement techniques with attosecond time resolution. The “attoclock” is a relatively simple method, which provides attosecond time resolution without the explicit need of attosecond pulses. In this chapter we review the details of this powerful experimental technique, which was employed in the recent years to investigate electron tunneling dynamics and to study the electron kinematics in strong field single and double ionization.

M. Smolarski and P. Eckle left academics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. F. Krausz, M. Ivanov, Rev. Mod. Phys. 81, 163 (2009)

    Article  ADS  Google Scholar 

  2. M. Hentschel et al., Nature 414, 509 (2001)

    Article  ADS  Google Scholar 

  3. P.M. Paul et al., Science 292, 1689 (2001)

    Article  ADS  Google Scholar 

  4. E. Goulielmakis et al., Science 320, 1614 (2008)

    Article  ADS  Google Scholar 

  5. X.M. Feng et al., Phys. Rev. Lett. 103, 183901 (2009)

    Article  ADS  Google Scholar 

  6. E. Goulielmakis et al., Science 305, 1267 (2004)

    Article  ADS  Google Scholar 

  7. G. Sansone et al., Science 314, 443 (2006)

    Article  ADS  Google Scholar 

  8. T. Remetter et al., Nat. Phys. 2, 323 (2006)

    Article  Google Scholar 

  9. J. Mauritsson et al., Phys. Rev. Lett. 100, 073003 (2008)

    Article  ADS  Google Scholar 

  10. A.H. Zewail, J. Phys. Chem. A 104, 5660 (2000)

    Article  Google Scholar 

  11. P. Tzallas et al., Nat. Phys. 7, 781 (2011)

    Article  Google Scholar 

  12. U. Keller, IEEE Photonics J. 2, 225 (2010)

    Article  Google Scholar 

  13. M.J. Abel et al., Chem. Phys. 366, 9 (2009)

    Article  ADS  Google Scholar 

  14. F. Ferrari et al., Nat. Photonics 4, 875 (2010)

    Article  ADS  Google Scholar 

  15. E. Goulielmakis et al., Nature 466, 739 (2010)

    Article  ADS  Google Scholar 

  16. H. Wang et al., Phys. Rev. Lett. 105, 143002 (2010)

    Article  ADS  Google Scholar 

  17. M. Holler et al., Phys. Rev. Lett. 106, 123601 (2011)

    Article  ADS  Google Scholar 

  18. J. Itatani et al., Phys. Rev. Lett. 88, 173903 (2002)

    Article  ADS  Google Scholar 

  19. M. Kitzler et al., Phys. Rev. Lett. 88, 173904 (2002)

    Article  ADS  Google Scholar 

  20. A.L. Cavalieri et al., Nature 449, 1029 (2007)

    Article  ADS  Google Scholar 

  21. P. Eckle, Attosecond Angular Streaking (Südwestdeutscher Verlag für Hochschulschriften, 2008)

    Google Scholar 

  22. P. Eckle et al., Science 322, 1525 (2008)

    Article  ADS  Google Scholar 

  23. P. Dietrich, F. Krausz, P.B. Corkum, Opt. Lett. 25, 16 (2000)

    Article  ADS  Google Scholar 

  24. A.N. Pfeiffer et al., Nat. Phys. 7, 428 (2011)

    Article  Google Scholar 

  25. P.B. Corkum, Phys. Rev. Lett. 71, 1994 (1993)

    Article  ADS  Google Scholar 

  26. H.R. Telle et al., Appl. Phys. B 69, 327 (1999)

    Article  ADS  Google Scholar 

  27. T. Brabec, F. Krausz, Phys. Rev. Lett. 78, 3282 (1997)

    Article  ADS  Google Scholar 

  28. P. Eckle et al., Nat. Phys. 4, 565 (2008)

    Article  Google Scholar 

  29. A.M. Perelomov, V.S. Popov, M.V. Terentev, Zh. Eksp. Teor. Fiz. 50, 1393 (1966)

    Google Scholar 

  30. L.V. Keldysh, Sov. Phys. JETP 20, 1307 (1965)

    MathSciNet  Google Scholar 

  31. M.V. Ammosov, N.B. Delone, V.P. Krainov, Sov. Phys. JETP 64, 1191 (1986)

    Google Scholar 

  32. X.M. Tong, C.D. Lin, J. Phys. B 38, 2593 (2005)

    Article  ADS  Google Scholar 

  33. X.M. Tong, Z.X. Zhao, C.D. Lin, Phys. Rev. A 66, 033402 (2002)

    Article  ADS  Google Scholar 

  34. C.M. Maharjan et al., Phys. Rev. A 72, 041403 (2005)

    Article  ADS  Google Scholar 

  35. M. Smolarski et al., Opt. Express 18, 17640 (2010)

    Article  ADS  Google Scholar 

  36. A.N. Pfeiffer et al., Nat. Phys. 8, 76 (2012)

    Article  Google Scholar 

  37. A. Guandalini et al., J. Phys. B, At. Mol. Opt. Phys. 39, S257 (2006)

    Article  ADS  Google Scholar 

  38. R. Dörner et al., Phys. Rep. 330, 95 (2000)

    Article  ADS  Google Scholar 

  39. J. Ullrich et al., Rep. Prog. Phys. 66, 1463 (2003)

    Article  ADS  Google Scholar 

  40. J. Ullrich et al., Comments At. Mol. Phys. 30, 285 (1994)

    Google Scholar 

  41. J. Ullrich et al., J. Phys. B, At. Mol. Opt. Phys. 30, 2917 (1997)

    Article  ADS  Google Scholar 

  42. R. Dörner et al., in Advances in Atomic, Molecular, and Optical Physics, vol. 48 (Academic Press, San Diego, 2002), p. 1

    Google Scholar 

  43. A.N. Pfeiffer, Attosecond electron kinematics in strong field single and double ionization, vol. 53. Dissertation at ETH Zurich, Nr. 19565 (2011)

    Google Scholar 

  44. T. Weber et al., Nature 405, 658 (2000)

    Article  ADS  Google Scholar 

  45. A.N. Pfeiffer et al., New J. Phys. 13, 093008 (2011)

    Article  ADS  Google Scholar 

  46. M. Schultze et al., Science 328, 1658 (2010)

    Article  ADS  Google Scholar 

  47. K. Klünder et al., Phys. Rev. Lett. 106, 143002 (2011)

    Article  ADS  Google Scholar 

  48. P. Dietrich et al., Phys. Rev. A 50, R3585 (1994)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

All the work regarding the development of the attoclock technique was supported by the NCCR Quantum Photonics (NCCR QP) and NCC Molecular Ultrafast Science and Technology (NCCR MUST) programmes, research instruments of the Swiss National Science Foundation (SNSF), by the ETH Research Grant ETH-03 09-2 and by the SNSF R’Equip grant 206021_128551/1. A special acknowledgement goes to L. Gallmann for revising this manuscript. Collaborations with R. Dörner, A. Staudte, L. B. Madsen, H. G. Muller and M. Büttiker are gratefully acknowledged as well as stimulating discussions with L. Cocke.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Cirelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cirelli, C., Pfeiffer, A.N., Smolarski, M., Eckle, P., Keller, U. (2013). The Attoclock: A Novel Ultrafast Measurement Technique with Attosecond Time Resolution. In: Plaja, L., Torres, R., Zaïr, A. (eds) Attosecond Physics. Springer Series in Optical Sciences, vol 177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37623-8_9

Download citation

Publish with us

Policies and ethics