Skip to main content

Funktionelle Bildgebung bei Schmerz

  • Chapter
Praktische Schmerzmedizin
  • 6167 Accesses

Zusammenfassung

Der Einsatz funktioneller Bildgebungsverfahren zur Untersuchung experimenteller und klinischer Schmerzzustände hat in der Vergangenheit maßgeblich zum Verständnis neuronaler Prozesse und deren Lokalisation im Gehirn beigetragen. Vor der Entwicklung dieser Verfahren basierte unser Wissen über die Schmerzverarbeitung bzw. die funktionelle Anatomie v. a. auf molekularbiologischen und elektrophysiologischen Befunden (Penfield et al. 1937, Stowell et al. 1984), Tierversuchen und Läsionsstudien (Head et al. 1911, Folz et al. 1962, Berthier et al. 1988). Im Gegensatz dazu stehen heute mit den modernen bildgebenden Verfahren Instrumente zur Verfügung, die nichtinvasive Untersuchungen in vivo und bei vollem Bewusstsein erlauben. Diese Techniken ermöglichen völlig neue Einblicke in die Schmerzverarbeitung, die zeitliche Dynamik sowie die Modulation.

Mit Hilfe funktioneller Bildgebungsmethoden konnten zudem bedeutende Einblicke in die Pathogenese von chronischen Schmerzerkrankungen gewonnen werden, die unser Verständnis über die zugrundeliegenden Mechanismen stark erweitert haben.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Afridi SK, Giffin NJ, Kaube H, Friston KJ, Ward NS, Frackowiak RS, Goadsby PJ (2005) A positron emission tomographic study in spontaneous migraine. Arch Neurol 62: 1270–1275

    PubMed  Google Scholar 

  • Ametamey SM, Samnick S, Leenders KL, Vontobel P, Quack G, Parsons CG, Schubiger PA (1999) Fluorine-18 radiolabelling, biodistribution studies and preliminary PET evaluation of a new memantine derivative for imaging the NMDA receptor. J Recept Signal Transduct Res 19: 129–141

    PubMed  CAS  Google Scholar 

  • Ametamey SM, Bruehlmeier M, Kneifel S, Kokic M, Honer M, Arigoni M, Buck A, Burger C, Samnick S, Quack G, Schubiger PA (2002) PET studies of 18F-memantine in healthy volunteers. Nucl Med Biol 29: 227–231

    PubMed  CAS  Google Scholar 

  • Andersson JL, Lilja A, Hartvig P, Langstrom B, Gordh T, Handwerker H, Torebjork E (1997) Somatotopic organization along the central sulcus, for pain localization in humans, as revealed by positron emission tomography. Exp Brain Res 117: 192–199

    PubMed  CAS  Google Scholar 

  • Apkarian AV (2010) Human Brain Imaging Studies of Chronic Pain: Translational Opportunities. In: Kruger L, Light AR (eds) Translational Pain Research: From Mouse to Man. CRC Press

    Google Scholar 

  • Apkarian AV, Bushnell MC, Treede R-D, Zubieta J-K (2005) Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 9: 463–484

    PubMed  Google Scholar 

  • Ashburner J, Friston K (2000) Voxel-based morphometry – the methods. Neuroimage 11: 805–821

    PubMed  CAS  Google Scholar 

  • Bahra A, Matharu MS, Buchel C, Frackowiak RS, Goadsby PJ (2001) Brainstem activation specific to migraine headache. Lancet 357: 1016–1017

    PubMed  CAS  Google Scholar 

  • Baliki MN, Chialvo DR, Geha PY, Levy RM, Harden RN, Parrish TB, Apkarian AV (2006) Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J Neurosci 26: 12165–12173

    PubMed  CAS  Google Scholar 

  • Baliki MN, Geha PY, Apkarian AV (2007) Spontaneous pain and brain activity in neuropathic pain: functional MRI and pharmacologic functional MRI studies. Curr Pain Headache Rep 11: 171–177

    PubMed  Google Scholar 

  • Baliki MN, Geha PY, Apkarian AV, Chialvo DR (2008) Beyond feeling: chronic pain hurts the brain disrupting the default-mode network dynamics. J Neurosci 28: 1398–1403

    PubMed  CAS  Google Scholar 

  • Bencherif B, Fuchs PN, Sheth R, Dannals RF, Campbell JN, Frost JJ (2002 Pain activation of human supraspinal opioid pathways as demonstrated by [11C]-carfentanil and positron emission tomography (PET). Pain 99: 589–598

    PubMed  CAS  Google Scholar 

  • Berthier M, Starkstein S, Leiguarda R (1988) Asymbolia for pain: a sensory- limbic disconnection syndrome. Ann Neurol 24: 41–49

    PubMed  CAS  Google Scholar 

  • Bingel U, Quante M, Knab R, Bromm B, Weiller C, Buchel C (2002) Subcortical structures involved in pain processing: evidence from single- trial fMRI. Pain 99: 313

    PubMed  CAS  Google Scholar 

  • Bingel U, Lorenz J, Schoell E, Weiller C, Büchel C (2006) Mechanisms of placebo analgesia: rACC recruitment of a subcortical antinociceptive network. Pain 120: 8–15

    PubMed  CAS  Google Scholar 

  • Boecker H, Sprenger T, Spilker ME, Henriksen G, Koppenhoefer M, Wagner KJ, Valet M, Berthele A, Tölle TR (2008) The runner›s high: opioidergic mechanisms in the human brain. Cereb Cortex 18: 2523–2531

    PubMed  Google Scholar 

  • Bornhovd K, Quante M, Glauche V, Bromm B, Weiller C, Buchel C (2002) Painful stimuli evoke different stimulus-response functions in the amygdala prefrontal insula and somatosensory cortex: a singletrial fMRI study. Brain 125: 1326–1336

    PubMed  CAS  Google Scholar 

  • Buchel C, Bornhovd K, Quante M, Glauche V, Bromm B, Weiller C (2002) Dissociable neural responses related to pain intensity stimulus intensity and stimulus awareness within the anterior cingulate cortex: a parametric single-trial laser functional magnetic resonance imaging study. J Neurosci 22: 970–976

    PubMed  CAS  Google Scholar 

  • Burgmer M, Gaubitz M, Konrad C, Wrenger M, Hilgart S, Heuft G, Pfleiderer B (2009) Decreased gray matter volumes in the cingulofrontal cortex and the amygdala in patients with fibromyalgia. Psychosom Med 71: 566–573

    PubMed  Google Scholar 

  • Burns HD, Van Laere K, Sanabria-Bohórquez S, Hamill TG, Bormans G, Eng WS, Gibson R, Ryan C, Connolly B, Patel S, Krause S, Vanko A, Van Hecken A, Dupont P, De Lepeleire I, Rothenberg P, Stoch SA, Cote J, Hagmann WK, Jewell JP, Lin LS, Liu P, Goulet MT, Gottesdiener K, Wagner JA, de Hoon J, Mortelmans L, Fong TM, Hargreaves RJ (2007) [18F]MK-9470 a positron emission tomography (PET) tracer for in vivo human PET brain imaging of the cannabinoid-1 receptor. Proc Natl Acad Sci USA 104: 9800–9805

    PubMed  CAS  Google Scholar 

  • Cauda F, Sacco K, D’Agata F, Duca S, Cocito D, Geminiani G, Migliorati F, Isoardo G (2009) Low-frequency BOLD fluctuations demonstrate altered thalamocortical connectivity in diabetic neuropathic pain. BMC Neurosci 10: 138

    PubMed  Google Scholar 

  • Denuelle M, Boulloche N, Payoux P, Fabre N, Trotter Y, Geraud G (2007) A PET study of photophobia during spontaneous migraine attacks. Neurology 76: 213–218

    Google Scholar 

  • Coghill RC, Sang CN, Berman KF, Bennett GJ, Iadarola MJ (1998) Global cerebral blood flow decreases during pain. J Cereb Blood Flow Metab 18: 141–147

    PubMed  CAS  Google Scholar 

  • Coghill RC, Gilron I, Iadarola MJ (2001) Hemispheric lateralization of somatosensory processing. J Neurophysiol 85: 2602–2612

    PubMed  CAS  Google Scholar 

  • Coull J, Nobre A (1998) Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J Neurosci 18: 7426–7435

    PubMed  CAS  Google Scholar 

  • Craig A, Reiman E, Evans A, Bushnell M (1996) Functional imaging of an illusion of pain. Nature 384: 258–260

    PubMed  CAS  Google Scholar 

  • Derbyshire SW (1999) Meta-Analysis of Thirty-Four Independent Samples Studied Using PET Reveals a Significantly Attenuated Central Response to Noxious Stimulation in Clinical Pain Patients. Curr Rev Pain 3: 265–280

    PubMed  Google Scholar 

  • Duncan JS (1999) Positron emission tomography receptor studies. Adv Neurol 79: 893–899

    PubMed  CAS  Google Scholar 

  • Eippert F, Finsterbusch J, Bingel U, Büchel C (2009) Direct evidence for spinal cord involvement in placebo analgesia. Science 326: 404

    PubMed  CAS  Google Scholar 

  • Folz E, White L (1962) Pain ›relief‹ by frontal cingulumotomy. J Neurosurg 19: 89–100

    Google Scholar 

  • Frost JJ (1993) Receptor imaging by PET and SPECT: focus on the opiate receptor. J Recept Res 13: 39–53

    PubMed  CAS  Google Scholar 

  • Geha PY, Baliki MN, Chialvo DR, Harden RN, Paice JA, Apkarian AV (2007) Brain activity for spontaneous pain of postherpetic neuralgia and its modulation by lidocaine patch therapy. Pain 128: 88–100

    PubMed  CAS  Google Scholar 

  • Geha PY, Baliki MN, Wang X, Harden RN, Paice JA, Apkarian AV (2008) Brain dynamics for perception of tactile allodynia (touch-induced pain) in postherpetic neuralgia. Pain 138: 641–656

    PubMed  CAS  Google Scholar 

  • Hagelberg N, Forssell H, Aalto S, Rinne JO, Scheinin H, Taiminen T, Någren K, Eskola O, Jääskeläinen SK (2003) Altered dopamine D2 receptor binding in atypical facial pain. Pain 106: 43–48

    PubMed  CAS  Google Scholar 

  • Harris RE, Clauw DJ, Scott DJ, McLean SA, Gracely RH, Zubieta JK (2007) Decreased central mu-opioid receptor availability in fibromyalgia. J Neurosci 27: 10000–10006

    PubMed  CAS  Google Scholar 

  • Harris RE, Zubieta JK, Scott DJ, Napadow V, Gracely RH, Clauw DJ (2009) Traditional Chinese acupuncture and placebo (sham) acupuncture are differentiated by their effects on mu-opioid receptors (MORs). Neuroimage 47: 1077–1085

    PubMed  Google Scholar 

  • Head H, Holmes G (1911) Sensory disturbances from cerebral lesions. Brain 34: 102–254

    Google Scholar 

  • Hofbauer RK, Rainville P, Duncan GH, Bushnell MC (2001) Cortical representation of the sensory dimension of pain. J Neurophysiol 86: 402–411

    PubMed  CAS  Google Scholar 

  • Hsieh JC, Belfrage M, Stone-Elander S, Hansson P, Ingvar M (1995) Central representation of chronic ongoing neuropathic pain studied by positron emission tomography. Pain 63: 225–236

    PubMed  CAS  Google Scholar 

  • Hsieh JC, Meyerson BA, Ingvar M (1999) PET study on central processing of pain in trigeminal neuropathy. Eur J Pain 3: 51–65

    PubMed  Google Scholar 

  • Jaaskelainen SK, Rinne JO, Forssell H, Tenovuo O, Kaasinen V, Sonninen P, Bergman J (2001) Role of the dopaminergic system in chronic pain – a fluorodopa-PET study. Pain 90: 257–260

    PubMed  CAS  Google Scholar 

  • Jones AK, Luthra SK, Maziere B, Pike VW, Loch C, Crouzel C, Syrota A, Jones T (1988) Regional cerebral opioid receptor studies with [11C] diprenorphine in normal volunteers. J Neurosci Methods 23: 121–129

    PubMed  CAS  Google Scholar 

  • Jones AK, Qi LY, Fujirawa T, Luthra SK, Ashburner J, Bloomfield P, Cunningham VJ, Itoh M, Fukuda H, Jones T (1991) In vivo distribution of opioid receptors in man in relation to the cortical projections of the medial and lateral pain systems measured with positron emission tomography. Neurosci Lett 126: 25–28

    PubMed  CAS  Google Scholar 

  • Jones AK, Cunningham VJ, Ha-Kawa S, Fujiwara T, Luthra SK, Silva S, Derbyshire S, Jones T (1994) Changes in central opioid receptor binding in relation to inflammation and pain in patients with rheumatoid arthritis. Br J Rheumatol 33: 909–916

    PubMed  CAS  Google Scholar 

  • Jones AK, Kitchen ND, Watabe H, Cunningham VJ, Jones T, Luthra SK, Thomas DG (1999) Measurement of changes in opioid receptor binding in vivo during trigeminal neuralgic pain using [11C] diprenorphine and positron emission tomography. J Cereb Blood Flow Metab 19: 803–808

    PubMed  CAS  Google Scholar 

  • Jones AK, Watabe H, Cunningham VJ, Jones T (2004) Cerebral decreases in opioid receptor binding in patients with central neuropathic pain measured by [11C]diprenorphine binding and PET. Eur J Pain 8: 479–485

    PubMed  CAS  Google Scholar 

  • Kim JH, Suh SI, Seol HY, Oh K, Seo WK, Yu SW, Park KW, Koh SB (2008) Regional grey matter changes in patients with migraine: a voxelbased morphometry study. Cephalalgia 28: 598–604

    PubMed  CAS  Google Scholar 

  • Kim JH, Kim S, Suh SI, Koh SB, Park KW, Oh K (2010) Interictal metabolic changes in episodic migraine: a voxel-based FDG-PET study. Cephalalgia 30: 53–61

    PubMed  CAS  Google Scholar 

  • Kuchinad A, Schweinhardt P, Seminowicz DA, Wood PB, Chizh BA, Bushnell MC (2007) Accelerated brain gray matter loss in fibromyalgia patients: premature aging of the brain? J Neurosci 27: 4004–4007

    PubMed  CAS  Google Scholar 

  • Leone M, Franzini A, Bussone G (2001) Stereotactic stimulation of posterior hypothalamic gray matter in a patient with intractable cluster headache N Engl J Med 345: 1428–1429

    PubMed  CAS  Google Scholar 

  • Leone M, Franzini A, Felisati G, Mea E, Curone M, Tullo V, Broggi G, Bussone G (2005) Deep brain stimulation and cluster headache. Neurol Sci 26 (Suppl 2):s138–139

    PubMed  Google Scholar 

  • Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412: 150–157

    PubMed  CAS  Google Scholar 

  • Maarrawi J, Peyron R, Mertens P, Costes N, Magnin M, Sindou M, Laurent B, Garcia-Larrea L (2007) Motor cortex stimulation for pain control induces changes in the endogenous opioid system. Neurology 69: 827–834

    PubMed  CAS  Google Scholar 

  • Magis D, Bruno MA, Fumal A, Gerardy PY, Hustinx R, Laureys S, Schoenen J (2011) Central modulation in cluster headache patients treated with occipital nerve stimulation: an FDG-PET study. BMC Neurol 11: 25

    PubMed  Google Scholar 

  • May A (2008) Chronic pain may change the structure of the brain. Pain 137: 7–15

    PubMed  Google Scholar 

  • May A, Bahra A, Buchel C, Frackowiak RS, Goadsby PJ (1998) Hypothalamic activation in cluster headache attacks. Lancet 352: 275–278

    PubMed  CAS  Google Scholar 

  • May A, Ashburner J, Buchel C, McGonigle DJ, Friston KJ, Frackowiak RS, Goadsby PJ (1999) Correlation between structural and functional changes in brain in an idiopathic headache syndrome. Nat Med 5: 836–838

    PubMed  CAS  Google Scholar 

  • May A, Bahra A, Buchel C, Frackowiak RS, Goadsby PJ (2000) PET and MRA findings in cluster headache and MRA in experimental pain. Neurology 55: 1328–1335

    PubMed  CAS  Google Scholar 

  • Melzack R, Casey K (1968) Sensory motivational and central control determinants of pain. CC Thomas, Springfield IL

    Google Scholar 

  • Moonen CTW, Bandettini PA (2000) Functional MRI. Springer, Heidelberg

    Google Scholar 

  • Moulton EA, Burstein R, Tully S, Hargreaves R, Becerra L, Borsook D (2008) Interictal dysfunction of a brainstem descending modulatory center in migraine patients. PLoS One 3: e3799

    PubMed  Google Scholar 

  • Napadow V, LaCount L, Park K, As-Sanie S, Clauw DJ, Harris RE (2010) Intrinsic brain connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis Rheum 62: 2545–2555

    PubMed  Google Scholar 

  • Obermann M, Nebel K, Schumann C, Holle D, Gizewski ER, Maschke M, Goadsby PJ, Diener HC, Katsarava Z (2009) Gray matter changes related to chronic posttraumatic headache. Neurology 73: 978–983

    PubMed  Google Scholar 

  • Obermann M, Rodriguez-Raecke R, Naegel S, Holle D, Mueller D, Yoon MS, Theysohn N, Blex S, Diener HC, Katsarava Z (2012) Gray matter volume reduction reflects chronic pain in trigeminal neuralgia. Neuroimage 74: 352–358

    Google Scholar 

  • Otti A, Guendel H, Henningsen P, Zimmer C, Wohlschlaeger AM, Noll- Hussong M (2013) Functional network connectivity of pain-related resting state networks in somatoform pain disorder: an exploratory fMRI study. J Psychiatry Neurosci 38: 57–65

    PubMed  Google Scholar 

  • Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60: 389–443

    Google Scholar 

  • Petrovic P, Kalso E, Petersson KM, Ingvar M (2002) Placebo and opioid analgesia – imaging a shared neuronal network. Science 295: 1737–1740

    PubMed  CAS  Google Scholar 

  • Peyron R, Laurent B, Garcia-Larrea L (2000) Functional imaging of brain responses to pain A review and meta-analysis. Neurophysiol Clin 30: 263–288

    PubMed  CAS  Google Scholar 

  • Qiu E, Wang Y, Ma L, Tian L, Liu R, Dong Z, Xu X, Zou Z, Yu S (2013) Abnormal brain functional connectivity of the hypothalamus in cluster headaches. PLoS One 8: e57896

    PubMed  CAS  Google Scholar 

  • Rainville P, Duncan GH, Price DD, Carrier B, Bushnell MC (1997) Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 277: 968–971

    PubMed  CAS  Google Scholar 

  • Rees G, Howseman A, Josephs O, Frith C, Friston K, Frackowiak R (1997) Characterizing the relationship between BOLD contrast and regional cerebral blood flow measurements by varying the stimulus presentation rate. Neuroimage 6: 270–278

    PubMed  CAS  Google Scholar 

  • Riedl V, Valet M, Wöller A, Sorg C, Vogel D, Sprenger T, Boecker H, Wohlschläger A, Tölle TR (2011) Repeated pain induces adaption of intrinsic brain activity to re ect past and predict future pain. Neuroimage 57: 206–213

    PubMed  Google Scholar 

  • Robinson ME, Craggs JG, Price DD, Perlstein WM, Staud R (2011) Gray matter volumes of pain-related brain areas are decreased in fibromyalgia syndrome. J Pain 12: 436–443

    PubMed  Google Scholar 

  • Rocca MA, Ceccarelli A, Falini A, Colombo B, Tortorella P, Bernasconi L, Comi G, Scotti G, Filippi M (2006) Brain gray matter changes in migraine patients with T2-visible lesions: a 3-T MRI study. Stroke 37: 765–770

    Google Scholar 

  • Rodriguez-Raecke R, Niemeier A, Ihle K, Ruether W, May A (2009) Brain gray matter decrease in chronic pain is the consequence and not the cause of pain. J Neurosci 29: 13746–13750

    PubMed  CAS  Google Scholar 

  • Sadato N, Yonekura Y, Yamada H, Nakamura S, Waki A, Ishii Y (1998) Activation patterns of covert word generation detected by fMRI: comparison with 3D PET. J Comput Assist Tomogr 22: 945–952

    PubMed  CAS  Google Scholar 

  • Sakai Y, Dobson C, Diksic M, Aube M, Hamel E (2008) Sumatriptan normalizes the migraine attack-related increase in brain serotonin synthesis. Neurology 70: 431–439

    PubMed  CAS  Google Scholar 

  • Schmidt-Wilcke T, Gänssbauer S, Neuner T, Bogdahn U, May A (2008) Subtle grey matter changes between migraine patients and healthy controls. Cephalalgia 28: 1–4

    PubMed  CAS  Google Scholar 

  • Shiue CY, Vallabhahosula S, Wolf AP, Dewey SL, Fowler JS, Schlyer DJ, Arnett CD, Zhou YG (1997) Carbon-11 labelled ketamine-synthesis distribution in mice and PET studies in baboons. Nucl Med Biol 24: 145–150

    PubMed  CAS  Google Scholar 

  • Sprenger T, Goadsby PJ (2009) Migraine pathogenesis and state of pharmacological treatment options. BMC Med 7: 71

    PubMed  Google Scholar 

  • Sprenger T, Boecker H, Tölle T, Bussone G, May A, Leone M (2004) Specific hypothalamic activation during a spontaneous cluster headache attack. Neurology 62: 516–517

    PubMed  CAS  Google Scholar 

  • Sprenger T, Valet M, Boecker H, Henriksen G, Spilker ME, Willoch F, Wagner K, Wester HJ, Tölle TR (2006) Opioidergic activation in the medial pain system after heat pain. Pain 122: 63–67

    PubMed  CAS  Google Scholar 

  • Sprenger T, Willoch F, Miederer M, Schindler F, Valet M, Berthele A, Spilker ME, Förderreuther S, Straube A, Stangier I, Wester HJ, Tölle TR (2006) Opioidergic changes in the pineal gland and hypothalamus in cluster headache: a ligand PET study. Neurology 11: 1108–1110

    Google Scholar 

  • Sprenger T, Ruther K, Valet M, Boecker H, Berthele A, Woller A, Pfaffenrath V, Tölle TR (2007) Change of metabolism in frontal brain circuits in cluster headache. Cephalalgia 27: 1033–1042

    PubMed  CAS  Google Scholar 

  • Stankewitz A, Aderjan D, Eippert F, May A (2011) Trigeminal nociceptive transmission in migraineurs predicts migraine attacks. J Neurosci 31: 1937–1943

    PubMed  CAS  Google Scholar 

  • Stowell H (1984) Event related brain Potenzials and human pain: a first objective overview. Int J Psychophysiol 1: 137–151

    PubMed  CAS  Google Scholar 

  • Tashiro M, Kubota K, Itoh M, Yoshioka T, Yoshida M, Nakagawa Y, Bereczki D, Sasaki H (1999) Hypometabolism in the limbic system of cancer patients observed by positron emission tomography. Psychooncology 8: 283–286

    PubMed  CAS  Google Scholar 

  • Tölle T, Kaufmann T, Siessmeier T, Lautenbacher S, Berthele A, Munz F, Zieglgänsberger W, Willoch F, Schwaiger M, Conrad B, Bartenstein P (1999) Region-Specific Encoding of Sensory and Affective Components of Pain in the Human Brain: A Positron Emission Tomography Correlation Analysis. Ann Neurol 45: 40–47

    PubMed  Google Scholar 

  • Tracey I (2007) Neuroimaging of pain mechanisms 2007. Curr Opin Support Palliat Care 1: 109–116

    PubMed  Google Scholar 

  • Valet M, Sprenger T, Boecker H, Willoch F, Rummeny E, Conrad B, Erhard P, Tölle TR (2004) Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain – an fMRI analysis. Pain 109: 399–408

    PubMed  Google Scholar 

  • Valet M, Gündel H, Sprenger T, Sorg C, Mühlau M, Zimmer C, Tölle TR (2009) Patients with somatoform pain disorder show gray-matter loss in pain processing structures – a voxel-based morphometric study. Psychosom Med 71: 49–56

    PubMed  Google Scholar 

  • Vogt BA, Finch DM, Olson CR (1992) Functional heterogeneity in cingulate cortex: the anterior executive and posterior evaluative regions. Cereb Cortex 2: 435–443

    PubMed  CAS  Google Scholar 

  • Vogt B, Derbyshire S, Jones A (1996) Pain processing in four regions of human cingulate cortex localized with co-registered PET and MR imaging. Eur J Neurosci 8: 1461–1473

    PubMed  CAS  Google Scholar 

  • Wager TD, Atlas LY, Lindquist MA, Roy M, Woo C-W, Kross E (2013) An fMRI-Based Neurologic Signature of Physical Pain. New Engl J Med 368: 1388–1397

    PubMed  CAS  Google Scholar 

  • Wagner KJ, Willoch F, Kochs E, Siessmeier T, Tölle T, Schwaiger M, Bartenstein P (2001) Dose-dependent regional cerebral blood flow changes during remifentanil infusion in humans: a positron emission tomography study. Anesthesiology 94: 732–739

    PubMed  CAS  Google Scholar 

  • Wagner KJ, Sprenger T, Kochs EF, Tölle TR, Valet M, Willoch F (2007) Imaging human cerebral pain modulation by dose-dependent opioid analgesia: A PET activation study using remifentanil. Anesthesiology106: 548–556

    PubMed  CAS  Google Scholar 

  • Weiller C, May A, Limmroth V, Juptner M, Kaube H, Schayck RV, Coenen HH, Diener HC (1995) Brain stem activation in spontaneous human migraine attacks. Nat Med 1: 658–660

    PubMed  CAS  Google Scholar 

  • Willoch F, Schindler F, Wester H, Empl M, Straube A, Schwaiger M, Conrad B, Tölle TR (2004) Central poststroke pain and reduced opioid receptor binding within pain processing circuitries: a 11Cdiprenorphine PET study. Pain 108: 213–220

    PubMed  CAS  Google Scholar 

  • Winder DG, Egli RE, Schramm NL, Matthews RT (2002) Synaptic plasticity in drug reward circuitry. Curr Mol Med 2: 667–676

    PubMed  CAS  Google Scholar 

  • Wood PB, Patterson JC 2nd, Sunderland JJ, Tainter KH, Glabus MF, Lilien DL (2007) Reduced presynaptic dopamine activity in fibromyalgia syndrome demonstrated with positron emission tomography: a pilot study. J Pain 8: 51–58

    PubMed  CAS  Google Scholar 

  • Xue T, Yuan K, Zhao L, Yu D, Zhao L, Dong T, Cheng P, von Deneen KM, Qin W, Tian J (2012) Intrinsic brain network abnormalities in migraines without aura revealed in resting-state fMRI. PLoS One 7: e52927

    PubMed  CAS  Google Scholar 

  • Xue T, Yuan K, Cheng P, Zhao L, Zhao L, Yu D, Dong T, von Deneen KM, Gong Q, Qin W, Tian J (2013) Alterations of regional spontaneous neuronal activity and corresponding brain circuit changes during resting state in migraine without aura. NMR Biomed, doi: 10.1002/nbm.2917. (Epub ahead of print)

    Google Scholar 

  • Zhang D, Snyder AZ, Fox MD, Sansbury MW, Shimony JS, Raichle ME (2008) Intrinsic functional relations between human cerebral cortex and thalamus. J Neurophysiol 100: 1740–1748

    PubMed  Google Scholar 

  • Zubieta JK, Dannals RF, Frost JJ (1999) Gender and age influences on human brain mu-opioid receptor binding measured by PET. Am J Psychiatry 156: 842–848

    PubMed  CAS  Google Scholar 

  • Zubieta J, Smith Y, Bueller J, Xu Y, Kilbourn M, Jewett D, Meyer C, Koeppe R, Stohler C (2001) Regional mu opioid receptor regulation of sensory and affective dimensions of pain. Science 13: 311– 315

    Google Scholar 

  • Zubieta J, Smith Y, Bueller J, Xu Y, Kilbourn M, Jewett D, Meyer C, Koeppe R, Stohler C (2002) μ-Opioid Receptor-Mediated Antinociceptive Responses Differ in Men and Women. J Neurosci 22: 5100–5107

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stankewitz, A., Sprenger, T., Valet, M., Tölle, T. (2013). Funktionelle Bildgebung bei Schmerz. In: Baron, R., Koppert, W., Strumpf, M., Willweber-Strumpf, A. (eds) Praktische Schmerzmedizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37605-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37605-4_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37604-7

  • Online ISBN: 978-3-642-37605-4

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics