Skip to main content

Part of the book series: Lecture Notes in Computer Science ((TLDKS,volume 7790))

Abstract

Since the introduction of FP-growth using FP-tree there has been a lot of research into extending its usage to data stream or incremental mining. Most incremental mining adapts the Apriori algorithm. However, we believe that using a tree based approach would increase performance as compared to the candidate generation and testing mechanism used in Apriori. Despite this, FP-tree still requires two scans through a dataset. In this paper we present a novel tree structure called Single Pass Ordered Tree, SPO-Tree, that captures information with a single scan for incremental mining. All items in a transaction are inserted/sorted based on their frequency. The tree is reorganized dynamically when necessary. SPO-Tree allows for easy maintenance in an incremental or data stream environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal, C.C., Han, J., Wang, J., Yu, P.S.: On demand classification of data streams. In: Proceedings of the tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2004, pp. 503–508. ACM, New York (2004)

    Chapter  Google Scholar 

  2. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in large databases. In: Buneman, P., Jajodia, S. (eds.) Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, pp. 207–216 (1993)

    Google Scholar 

  3. Cheng, H., Yan, X., Han, J.: Incspan: incremental mining of sequential patterns in large database. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2004, pp. 527–532. ACM, New York (2004)

    Chapter  Google Scholar 

  4. Cheung, D.W.L., Han, J., Ng, V., Wong, C.Y.: Maintenance of discovered association rules in large databases: An incremental updating technique. In: Proceedings of the Twelfth International Conference on Data Engineering, ICDE 1996, pp. 106–114. IEEE Computer Society, Washington, DC (1996)

    Chapter  Google Scholar 

  5. Cheung, W., Zaiane, O.: Incremental mining of frequent patterns without candidate generation or support constraint. In: Proceedings of the Seventh International Database Engineering and Applications Symposium, pp. 111–116 (2003)

    Google Scholar 

  6. Chi, Y., Wang, H., Yu, P.S., Muntz, R.R.: Catch the moment: maintaining closed frequent itemsets over a data stream sliding window. Knowl. Inf. Syst. 10, 265–294 (2006)

    Article  Google Scholar 

  7. Chi, Y., Wang, H., Yu, P., Muntz, R.: Moment: maintaining closed frequent itemsets over a stream sliding window. In: Fourth IEEE International Conference on Data Mining (ICDM 2004), pp. 59 –66 (2004)

    Google Scholar 

  8. Cuzzocrea, A.: CAMS: OLAPing Multidimensional Data Streams Efficiently. In: Pedersen, T.B., Mohania, M.K., Tjoa, A.M. (eds.) DaWaK 2009. LNCS, vol. 5691, pp. 48–62. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Cuzzocrea, A.: Retrieving Accurate Estimates to OLAP Queries over Uncertain and Imprecise Multidimensional Data Streams. In: Bayard Cushing, J., French, J., Bowers, S. (eds.) SSDBM 2011. LNCS, vol. 6809, pp. 575–576. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  10. Cuzzocrea, A., Chakravarthy, S.: Event-based lossy compression for effective and efficient olap over data streams. Data Knowl. Eng. 69(7), 678–708 (2010)

    Article  Google Scholar 

  11. Frank, A., Asuncion, A.: UCI machine learning repository (2010), http://archive.ics.uci.edu/ml/

  12. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. SIGMOD Rec. 29, 1–12 (2000)

    Article  Google Scholar 

  13. Koh, J.-L., Shieh, S.-F.: An Efficient Approach for Maintaining Association Rules Based on Adjusting FP-Tree Structures1. In: Lee, Y., Li, J., Whang, K.-Y., Lee, D. (eds.) DASFAA 2004. LNCS, vol. 2973, pp. 417–424. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Leung, C.K.S., Khan, Q.I., Li, Z., Hoque, T.: CanTree: A canonical-order tree for incremental frequent-pattern mining. Knowl. Inf. Syst. 11, 287–311 (2007)

    Article  Google Scholar 

  15. Li, H.F., Lee, S.Y., Shan, M.K.: Online mining (recently) maximal frequent itemsets over data streams. In: Proceedings of the 15th International Workshop on Research Issues in Data Engineering: Stream Data Mining and Applications, RIDE 2005, pp. 11–18. IEEE Computer Society, Washington, DC (2005)

    Google Scholar 

  16. Li, H.F., Shan, M.K., Lee, S.Y.: DSM-FI: An efficient algorithm for mining frequent itemsets in data streams. Knowledge and Information Systems 17, 79–97 (2008)

    Article  Google Scholar 

  17. Manku, G.S., Motwani, R.: Approximate frequency counts over data streams. In: Proceedings of the 28th International Conference on Very Large Data Bases, VLDB 2002, pp. 346–357. VLDB Endowment (2002)

    Google Scholar 

  18. O’Callaghan, L., Mishra, N., Meyerson, A., Guha, S., Motwani, R.: Streaming-data algorithms for high-quality clustering. In: Proceedings of the 18th International Conference on Data Engineering, pp. 685–694 (2002)

    Google Scholar 

  19. Sarda, N.L., Srinivas, N.V.: An adaptive algorithm for incremental mining of association rules. In: Proceedings of the 9th International Workshop on Database and Expert Systems Applications, DEXA 1998, pp. 240–245. IEEE Computer Society, Washington, DC (1998)

    Google Scholar 

  20. Tanbeer, S.K., Ahmed, C.F., Jeong, B.-S., Lee, Y.-K.: CP-Tree: A Tree Structure for Single-Pass Frequent Pattern Mining. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 1022–1027. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Yu, J.X., Chong, Z., Lu, H., Zhang, Z., Zhou, A.: A false negative approach to mining frequent itemsets from high speed transactional data streams. Information Sciences 176(14), 1986–2015 (2006)

    Article  Google Scholar 

  22. Zheng, Z., Kohavi, R., Mason, L.: Real world performance of association rule algorithms. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2001, pp. 401–406. ACM, New York (2001)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Koh, Y.S., Dobbie, G. (2013). Efficient Single Pass Ordered Incremental Pattern Mining. In: Hameurlain, A., Küng, J., Wagner, R., Cuzzocrea, A., Dayal, U. (eds) Transactions on Large-Scale Data- and Knowledge-Centered Systems VIII. Lecture Notes in Computer Science, vol 7790. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37574-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-37574-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-37573-6

  • Online ISBN: 978-3-642-37574-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics